
Concept explainers
(a)
Interpretation:
The chemical equations for the combustion of propane and ethyne have to be written.
Concept Introduction:
A hydrocarbon undergoes complete combustion to produce carbon dioxide and water. This is chemical property of all hydrocarbons.
Complete combustion occurs if enough oxygen is present.
Incomplete combustion occurs, if there is not enough oxygen present. Incomplete combustion results in the formation of toxic gases.
(a)

Answer to Problem 11.47E
The chemical equation for complete combustion reaction of propane is,
The chemical equation for complete combustion reaction of ethyne (Acetylene) is,
Explanation of Solution
Combustion reaction of Propane:
Propane undergoes complete combustion reaction to form carbon dioxide and water.
The chemical equation for complete combustion reaction of propane is,
The incomplete combustion reaction of propane results in the formation of carbon, carbon monoxide, carbon dioxide and water. The chemical equation for incomplete combustion reaction of propane is,
Combustion reaction of Acetylene:
Acetylene (or) ethyne undergoes complete combustion reaction to form carbon dioxide and water vapor as their products. The chemical equation for complete combustion reaction of acetylene is,
(b)
Interpretation:
The enthalpy of combustion for each fuel per gram and per mole has to be calculated.
Concept Introduction:
Hess Law:
The total enthalpy change during the complete course of a
(b)

Explanation of Solution
Combustion reaction of Propane:
Propane undergoes complete combustion reaction to form carbon dioxide and water.
The chemical equation for complete combustion reaction of propane is,
Enthalpy of combustion of propane:
Heat of formation of propane=
Heat of formation of carbon dioxide gas=
Heat of formation of water=
The enthalpy of combustion of propane is,
The enthalpy of combustion of propane is
The enthalpy of combustion of propane is
Combustion reaction of Acetylene:
Acetylene (or) ethyne undergoes complete combustion reaction to form carbon dioxide and water vapor as their products. The chemical equation for complete combustion reaction of acetylene is,
Enthalpy of combustion of acetylene:
Heat of formation of acetylene=
Heat of formation of carbon dioxide gas=
Heat of formation of water=
The enthalpy of combustion of acetylene is,
The enthalpy of combustion of acetylene is
The enthalpy of combustion of acetylene is
(c)
Interpretation:
The reason why propane torches are not used for wielding has to be calculated.
(c)

Explanation of Solution
Propane undergoes complete combustion reaction to form carbon dioxide and water.
The chemical equation for complete combustion reaction of propane is,
The enthalpy of combustion of propane is
Acetylene (or) ethyne undergoes complete combustion reaction to form carbon dioxide and water vapor as their products. The chemical equation for complete combustion reaction of acetylene is,
The enthalpy of combustion of acetylene is
The enthalpy of combustion of propane is higher than the enthalpy of combustion of acetylene, and hence it cannot be used for wielding purposes. It also produces a lower flame temperature and the pre-heat time is more. Propane cannot be used for gas wielding because it does not have a reducing zone.
Want to see more full solutions like this?
Chapter 11 Solutions
Chemical Principles: The Quest for Insight
- Determine the distance between the metal and the OHP layer using the Helm- holtz model when the electrode's differential capacitance is 145 μF cm². DATA: dielectric constant of the medium for the interfacial zone &r= lectric constant of the vacuum &0 = 8.85-10-12 F m-1 = 50, die-arrow_forwardDescribe a sequence of photophysical processes that can be followed by radiation adsorbed by a molecule in the ground state to give rise to phosphorescent emission.arrow_forwardState two similarities between fluorescence and phosphorescence.arrow_forward
- State three photophysical processes that can be related to the effects of incident radiation on a molecule in its ground state. Consider that radiation can give rise to fluorescent emission, but not phosphorescent emission.arrow_forwardIn a photochemical reaction, how is the rate of the process related to its quantum yield?arrow_forwardPrimary and global quantum yields in photochemistry. Define them and give their formulas. Differentiate between them.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





