(a)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/16 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(a)
Answer to Problem 11.27EP
Half-life of the radionuclide is 1.4 days.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 4 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 1.4 days.
Half-life of the given sample is determined.
(b)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/64 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(b)
Answer to Problem 11.27EP
Half-life of the radionuclide is 0.90 day.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 6 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 0.90 day.
Half-life of the given sample is determined.
(c)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/256 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(c)
Answer to Problem 11.27EP
Half-life of the radionuclide is 0.68 day.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 8 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 0.68 day.
Half-life of the given sample is determined.
(d)
Interpretation:
Half-life of the radionuclide has to be determined if after 5.4 days, 1/1024 fraction of undecayed nuclide is present.
Concept Introduction:
Radioactive nuclides undergo disintegration by emission of radiation. All the radioactive nuclide do not undergo the decay at a same rate. Some decay rapidly and others decay very slowly. The nuclear stability can be quantitatively expressed by using the half-life.
The time required for half quantity of the radioactive substance to undergo decay is known as half-life. It is represented as
The equation that relates amount of decayed radioactive material, amount of undecayed radioactive material and the time elapsed can be given as,
(d)
Answer to Problem 11.27EP
Half-life of the radionuclide is 0.54 day.
Explanation of Solution
Number of half-lives can be determined as shown below,
As the bases are equal, the power can be equated. This gives the number of half-lives that have elapsed as 10 half-lives.
In the problem statement it is given that the time is 5.4 days. From the number of half-lives elapsed and the total time given, the length of one half-life can be calculated as shown below,
Therefore, the half-life of the given sample is determined as 0.54 day.
Half-life of the given sample is determined.
Want to see more full solutions like this?
Chapter 11 Solutions
General, Organic, and Biological Chemistry
- Definition and classification of boranes.arrow_forwardWhich of the terms explain the relationship between the two compounds? CH2OH Он Он Он Он α-D-galactose anomers enantiomers diastereomers epimers CH2OH ОН O он Он ОН B-D-galactosearrow_forwardHi, I need help on my practice final, If you could offer strategies and dumb it down for me with an explanation on how to solve that would be amazing and beneficial.arrow_forward
- Hi I need help with my practice final, it would be really helpful to offer strategies on how to solve it, dumb it down, and a detailed explanation on how to approach future similar problems like this. The devil is in the details and this would be extremely helpfularrow_forwardIn alpha-NbI4, Nb4+ should have the d1 configuration (bond with paired electrons: paramagnetic). Please comment.arrow_forwardHi, I need help on my practice final, if you could explain how to solve it offer strategies and dumb it down that would be amazing. Detail helpsarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning