University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 11.25DQ
When rubber mounting blocks are used to absorb machine vibrations through elastic hysteresis, as mentioned in Section 11.5, what becomes of the energy associated with the vibrations?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Proof that the energy stored in the compact bone is given by E = AL0 (Sb) ^ 2 / 2γ. When Sb is bone stress. *
Your biceps muscle is attached to your elbow by the distal biceps tendon. An average adults tendon has a 6 mm by 3 mm rectangular cross-section and is 63 mm in length. A tendon has a Young’s modulus of 1.5x10^9 N/m^2. How much work must be done to stretch the length of the distal biceps tendon by 10%? Assume that the tendon is a linearly elastic material and that stretching does not alter it’s cross-section.
Review Problem. A 36.0 kg hammer strikes a steel spike 2.20 cm in diameter while moving with speed of 22.0 m/s. The
hammer rebounds with speed 11.0 m/s after 0.110 s. What is the average strain in the spike during the impact?
(a) What is the approximate magnitude of force (in N) a martial arts instructor uses to break a board if her hand's speed at
time of impact is 10.5 m/s and decreasing to 1.05 m/s during a 0.00200 s time-of-contact with the board? The mass of her
hand and arm is 1.15 kg.
(b) Estimate the shear stress (in N/m2), assuming this force is exerted on a 1.00 cm-thick pine board that is 10.0 cm wide.
| N/m²
(c) If the maximum shear stress the board can support before breaking is 3.60 x 106 N/m2, will the board break?
Yes
No
O O
Chapter 11 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 11.1 - Which situation satisfies both the first and...Ch. 11.2 - A rock is attached to the left end of a uniform...Ch. 11.3 - A metal advertising sign (weight w) for a...Ch. 11.4 - A copper rod of cross-sectional area 0.500 cm2 and...Ch. 11.5 - While parking your car, you accidentally back into...Ch. 11 - Does a rigid object in uniform rotation about a...Ch. 11 - (a) Is it possible for an object to be in...Ch. 11 - Prob. 11.3DQCh. 11 - Does the center of gravity of a solid body always...Ch. 11 - Prob. 11.5DQ
Ch. 11 - You are balancing a wrench by suspending it at a...Ch. 11 - You can probably stand flatfooted on the floor and...Ch. 11 - Prob. 11.8DQCh. 11 - An object consists of a ball of weight W glued to...Ch. 11 - Prob. 11.10DQCh. 11 - Prob. 11.11DQCh. 11 - In pioneer days, when a Conestoga wagon was stuck...Ch. 11 - The mighty Zimbo claims to have leg muscles so...Ch. 11 - Why is it easier to hold a 10-kg dumbbell in your...Ch. 11 - Certain features of a person, such as height and...Ch. 11 - During pregnancy, women often develop back pains...Ch. 11 - Why is a tapered water glass with a narrow base...Ch. 11 - Prob. 11.18DQCh. 11 - A uniform beam is suspended horizontally and...Ch. 11 - If a metal wire has its length doubled and its...Ch. 11 - A metal wire of diameter D stretches by 0.100 mm...Ch. 11 - Prob. 11.22DQCh. 11 - The material in human bones and elephant bones is...Ch. 11 - There is a small bui appreciable amount of elastic...Ch. 11 - When rubber mounting blocks are used to absorb...Ch. 11 - A 0.120-kg. 50.0-cm-long uniform bar has a small...Ch. 11 - Prob. 11.2ECh. 11 - A uniform rod is 2.00 m long and has mass 1.80 kg....Ch. 11 - A uniform 300-N trapdoor in a floor is hinged at...Ch. 11 - Raising a Ladder. A ladder carried by a fire truck...Ch. 11 - Two people are carrying a uniform wooden board...Ch. 11 - Two people carry a heavy electric motor by placing...Ch. 11 - A 60.0-cm. uniform. 50.0-N shelf is supported...Ch. 11 - A 350-N, uniform. 1.50-m bar is suspended...Ch. 11 - A uniform ladder 5.0 m long rests against a...Ch. 11 - A diving board 3.00 m long is supported at a point...Ch. 11 - A uniform aluminum beam 9.00 m long, weighing 300...Ch. 11 - Find the tension T in each cable and the magnitude...Ch. 11 - The horizontal beam in Fig. E11.14 weighs 190 N....Ch. 11 - The boom shown in Fig. E11.15 weighs 2600 N and is...Ch. 11 - Suppose that you can lift no more than 650 N...Ch. 11 - A 9.00-m-long uniform beam is hinged to a vertical...Ch. 11 - A 15,000-N crane pivots around a friction-free...Ch. 11 - A 3.00-m-long. 190-N, uniform rod at the zoo is...Ch. 11 - A nonuniform beam 4.50 m long and weighing 1.40 kN...Ch. 11 - A Couple. Two forces equal in magnitude and...Ch. 11 - BIO A Good Workout. You are doing exercises on a...Ch. 11 - BIO Neck Muscles. A student bends her head at 40.0...Ch. 11 - BIO Biceps Muscle. A relaxed biceps muscle...Ch. 11 - A circular steel wire 2.00 m long must stretch no...Ch. 11 - Two circular rods, one steel and the other copper,...Ch. 11 - A metal rod that is 4.00 m long and 0.50 cm2 in...Ch. 11 - Stress on a Mountaineers Rope. A nylon rope used...Ch. 11 - In constructing a large mobile, an artist hangs an...Ch. 11 - A vertical, solid steel post 25 cm in diameter and...Ch. 11 - BIO Compression of Human Bone. The bulk modulus...Ch. 11 - A solid gold bar is pulled up from the hold of the...Ch. 11 - A specimen of oil having an initial volume of 600...Ch. 11 - In the Challenger Deep of the Marianas Trench, the...Ch. 11 - A copper cube measures 6.00 cm on each side. The...Ch. 11 - A square steel plate is 10.0 cm on a side and...Ch. 11 - In lab tests on a 9.25-cm cube of a certain...Ch. 11 - A brass wire is to withstand a tensile force of...Ch. 11 - In a materials testing laboratory, a metal wire...Ch. 11 - A 4.0-m-long steel wire has a cross-sectional area...Ch. 11 - CP A steel cable with cross-sectional area 3.00...Ch. 11 - A door 1.00 m wide and 2.00 m high weighs 330 N...Ch. 11 - A box of negligible mass rests at the lett end of...Ch. 11 - Sir Lancelot rides slowly out of the castle at...Ch. 11 - Mountain Climbing. Mountaineers often use a rope...Ch. 11 - A uniform, 8.0-m, 1150-kg beam is hinged to a wall...Ch. 11 - A uniform, 255.N rod that is 2.00 m long carries a...Ch. 11 - A claw hammer is used to pull a nail out of a...Ch. 11 - You open a restaurant and hope to entice customers...Ch. 11 - End A of the bar AB in Fig. P11.50 rests on a...Ch. 11 - BIO Supporting a Broken Leg. A therapist tells a...Ch. 11 - A Truck on a Drawbridge. A loaded cement mixer...Ch. 11 - BIO Leg Raises. In a simplified version of the...Ch. 11 - BIO Pumping Iron. A 72.0-kg weightlifter doing arm...Ch. 11 - Prob. 11.55PCh. 11 - You are asked to design the decorative mobile...Ch. 11 - A uniform, 7.5-m-long beam weighing 6490 N is...Ch. 11 - CP A uniform drawbridge must be held at a 37 angle...Ch. 11 - BIO Tendon-Stretching Exercises. As part of an...Ch. 11 - (a) In Fig. P11.60 a 6.00-m-loog, uniform beam is...Ch. 11 - A uniform, horizontal flagpole 5.00 m long with a...Ch. 11 - A holiday decoration consists of two shiny glass...Ch. 11 - BIO Downward-Facing Dog. The yoga exercise...Ch. 11 - A uniform metal bar that is 8.00 m long and has...Ch. 11 - A worker wants to turn over a uniform. 1250-N,...Ch. 11 - One end of a uniform meter stick is placed against...Ch. 11 - Two friends are carrying a 200-kg crate up a...Ch. 11 - BIO Forearm. In the human arm, the forearm and...Ch. 11 - BIO CALC Refer to the discussion of holding a...Ch. 11 - In a city park a nonuniform wooden beam 4.00 m...Ch. 11 - You are a summer intern for an architectural firm....Ch. 11 - You are trying to raise a bicycle wheel of mass m...Ch. 11 - The Farmyard Gate. A gate 4.00 m wide and 2.00 m...Ch. 11 - If you put a uniform block at the edge of a table,...Ch. 11 - Two uniform, 75.0-g marbles 2.00 cm in diameter...Ch. 11 - Two identical, uniform beams weighing 260 N each...Ch. 11 - An engineer is designing a conveyor system for...Ch. 11 - A weight W is supported by attaching it to a...Ch. 11 - A garage door is mounted on an overhead rail (Fig....Ch. 11 - Pyramid Guilders. Ancient pyramid builders are...Ch. 11 - CP A 12.0-kg mass, fastened to the end of an...Ch. 11 - Hookes Law for a Wire. A wire of length l0 and...Ch. 11 - A 1.05-m-long rod of negligible weight is...Ch. 11 - CP An amusement park ride consists of...Ch. 11 - CP BIO Stress on the Shin Bone. The compressive...Ch. 11 - DATA You are to use a long, thin wire to build a...Ch. 11 - Prob. 11.87PCh. 11 - DATA You are a construction engineer working on...Ch. 11 - Two ladders, 4.00 m and 3.00 m long, are hinged at...Ch. 11 - Knocking Over a Post. One end of a post weighing...Ch. 11 - An angler hangs a 4.50-kg fish from a vertical...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - If he leans slightly farther back (increasing the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...Ch. 11 - BIO TORQUES AND TUG-OF-WAR. In a study of the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. 2.What is the charge of an antielectro...
Cosmic Perspective Fundamentals
The computer program assumes a particular coordinate system. Describe this coordinate system.
Tutorials in Introductory Physics
9. (Il) Three vectors are shown in Fig. 3—35 Q. Their magnitudes are given in arbitrary units. Determine the su...
Physics: Principles with Applications
1. Can the magnitude of the displacement vector be more than the distance traveled? Less than the distance trav...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid cylindrical rod BC of length L = 600 mm and radius r = 12 mm is attached to the rigid lever AB of length a = 300 mm and to the fixed support at C. Design requires that the displacement of A not exceed 10 mm when P = 700 N force is applied at A. For a material with G = 70 GPa and τall = 80 MPa what is the safety of the system under displacement and stress considerations.arrow_forwardWithout fracture of the Femur, determine the maximum height, in cm, from which a 70-kg woman can jump onto just one of her heels, where bare foot and where keeping her leg straight. Assume that all of her stored gravitational potential energy is transferred to strain potential energy in one of her femurs. Take the following values: her femur length, / = 60 cm, her femur area, A = 3.5 cm2, Young's modulus for her bone, Y= 1.2 x1010 N/m2, and the rupture stress for her bone is omax = 7.0 x 10 N/m2. 12 cm 110cm 9.9cm 56 cm 6.2 cm 9.5 cm Previous Page Next Page Page 10 of 14arrow_forwardWhen rubber mounting blocks are used to absorb machine vibrations through elastic hysteresis, what becomes of the energy associated with the vibrations?arrow_forward
- A fiberglass composite consists of epoxy matrix reinforced with randomly oriented and uniformly distributed E-glass fibers. The moduli of elasticity of the glass fibers and the epoxy are 65 and 7 GPa, respectively. If the volume percentage of fibers is 33%, and the fiber efficiency is 0.2, calculate the modulus of elasticity of the fiberglass.arrow_forwardWhat causes bandgaps in periodic elastic laminates? I've been trying to find an explanation for why bandgaps can form in periodic elastic laminates but so far I haven't found a good explanation. Can anyone point me to any resources which might provide an explanation or give a good analogy between this and other areas of physics where bandgaps may occur?arrow_forwardNylon strips are fused to glass plates. When moderately heated the nylon will become soft while the glass stays approximately rigid. Determine the average shear strain in the nylon due to the load P when the assembly deforms as indicated. 2 mm 3 mm 5 mm 3 mm 5 mm 3 mm 0.197 rad 0.297 rad O 0.397 rad O 0.125 rad O none of the abovearrow_forward
- On a forest trail a 4m long birch tree trunk is laid across a ravine as a bridge. The trunk is 4m long and just touching each side of the ravine. The trunk is 20cm in diameter and roughly cylindrical. The Young's modulus of birch is 15.2 GPa and its density is 610kg/m. How far does the middle of the trunk bend under its own weight? (answer in mm) Answer:arrow_forwardThe bxdxh rubber blocks shown are used in a double U shear mount to isolate the vibration of a machine from its supports. An applied load of P = 630 N causes the upper frame to be deflected downward by 7.9 mm. Determine the average shear strain and the shear stress in the rubber blocks. Assume b = 15 mm, d = 34 mm, and h = 20. Answers: P Average shear strain = Average shear stress = i i Double U anti-vibration shear mount 1 1 b Shear deformation of blocks Rubber block dimensions rad. d kPa.arrow_forwardA wire of original length L and cross sectional area A is stretched within its elastic limit by a stress S.Show that the density of stored elastic energy in the stretched wire is S2/2Y.arrow_forward
- A wire of length L, Young’s modulus Y, and crosssectional area A is stretched elastically by an amount ΔL. By Hooke’s law, the restoring force is -k ΔL. (a) Show that k = YA/L. (b) Show that the work done in stretching the wire byan amount ΔL is W = 1/2 YA(ΔL)2/L .arrow_forwardThe illustrated belt is made of rubber (E= = 4 MPa) and has a thickness of 4 mm. It passes through a pulley whose diameter is 20 cm. The belt is subjected to a tension of 50 N. What must be the minimum width, L, so that the stress does not exceed 200 kPa? Answer: 10.3 cmarrow_forwardConsider a metal bar of length L, cross-sectional area A, and Young's modulus Y. When a tension force F is applied to the bar, it causes an extension AL. Model the material as a cubic lattice, where the atoms lie at the corners of the cubes and are connected by springs with equilibrium length x. Calculate the force constant k of the atomic springs by deriving expressions for (1) the number of atoms in any cross-sectional area, (2) the number of atoms in a single chain of length L, (3) the microscopic extension Ax between atoms, (4) the tensile force f between atoms, (5) write f = kAr and show that k = Yr, (6) calculate the value of k for a typical metal such as aluminum, for which Y = 70 GN/m² and x = 0.4 nm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY