CHEMICAL PRINCIPLES (LL) W/ACCESS
7th Edition
ISBN: 9781319421175
Author: ATKINS
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 11.16E
Interpretation Introduction
Interpretation:
The molecular formula of the hydrocarbon and the structural formula of the possible isomers have to be given.
Concept Introduction:
Structural isomers: Structural isomers of the compounds have same molecular formula but difference in the spatial arrangement of atoms.
Structural formula: Structural formulas identify the location of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe structural isomerism and the different types that exist. With the aid of diagrams use the molecular formulae C5H12 and C5H10 to explain structural isomerism in aliphatic alkanes and alkenes
explain structural isomerism in aliphatic alkanes and geometric isomerism in alkenes.
Describe structural isomerism and the different types that exist. With the aid of diagrams use the molecular formulae C5H12 and C5H10 to explain structural isomerism in aliphatic alkanes and alkenes.
Describe geometric isomerism. With the aid of diagrams use the molecular formula C5H10 to explain geometric isomerism in alkenes.
Propane, C3H8, is a hydrocarbon that is commonly used as a fuel.(a) Write a balanced equation for the complete combustion of propane gas.(b) Calculate the volume of air at 25 °C and 1.00 atmosphere that is needed to completely combust 25.0 grams of propane. Assume that air is 21.0 percent O2 by volume. (Hint:use the information that 1.00 L of air at 25 °C and 1.00 atm contains 0.275 g of O2 per liter.)(c) The heat of combustion of propane is −2,219.2 kJ/mol. Calculate the heat of formation, ΔH°f of propane given that ΔH°f of H2O(l) = −285.8 kJ/mol and ΔH°f of CO2(g) = −393.5 kJ/mol. (d) Assuming that all of the heat released in burning 25.0 grams of propane is transferred to 4.00 kilograms of water, calculate the increase in temperature of the water.
Chapter 11 Solutions
CHEMICAL PRINCIPLES (LL) W/ACCESS
Ch. 11 - Prob. 11A.1ASTCh. 11 - Prob. 11A.1BSTCh. 11 - Prob. 11A.2ASTCh. 11 - Prob. 11A.2BSTCh. 11 - Prob. 11A.3ASTCh. 11 - Prob. 11A.3BSTCh. 11 - Prob. 11A.4ASTCh. 11 - Prob. 11A.4BSTCh. 11 - Prob. 11A.5ASTCh. 11 - Prob. 11A.5BST
Ch. 11 - Prob. 11A.6ASTCh. 11 - Prob. 11A.6BSTCh. 11 - Prob. 11A.1ECh. 11 - Prob. 11A.2ECh. 11 - Prob. 11A.3ECh. 11 - Prob. 11A.4ECh. 11 - Prob. 11A.5ECh. 11 - Prob. 11A.6ECh. 11 - Prob. 11A.7ECh. 11 - Prob. 11A.8ECh. 11 - Prob. 11A.9ECh. 11 - Prob. 11A.10ECh. 11 - Prob. 11A.11ECh. 11 - Prob. 11A.12ECh. 11 - Prob. 11A.13ECh. 11 - Prob. 11A.14ECh. 11 - Prob. 11A.15ECh. 11 - Prob. 11A.16ECh. 11 - Prob. 11A.17ECh. 11 - Prob. 11A.18ECh. 11 - Prob. 11A.19ECh. 11 - Prob. 11A.20ECh. 11 - Prob. 11A.21ECh. 11 - Prob. 11A.22ECh. 11 - Prob. 11A.23ECh. 11 - Prob. 11A.24ECh. 11 - Prob. 11A.25ECh. 11 - Prob. 11A.26ECh. 11 - Prob. 11A.27ECh. 11 - Prob. 11A.28ECh. 11 - Prob. 11B.1ASTCh. 11 - Prob. 11B.1BSTCh. 11 - Prob. 11B.1ECh. 11 - Prob. 11B.3ECh. 11 - Prob. 11B.4ECh. 11 - Prob. 11B.5ECh. 11 - Prob. 11B.6ECh. 11 - Prob. 11B.7ECh. 11 - Prob. 11B.8ECh. 11 - Prob. 11C.1ASTCh. 11 - Prob. 11C.1BSTCh. 11 - Prob. 11C.1ECh. 11 - Prob. 11C.2ECh. 11 - Prob. 11C.3ECh. 11 - Prob. 11C.4ECh. 11 - Prob. 11C.5ECh. 11 - Prob. 11C.6ECh. 11 - Prob. 11C.7ECh. 11 - Prob. 11C.8ECh. 11 - Prob. 11C.9ECh. 11 - Prob. 11C.10ECh. 11 - Prob. 11C.11ECh. 11 - Prob. 11C.12ECh. 11 - Prob. 11C.13ECh. 11 - Prob. 11C.14ECh. 11 - Prob. 11D.1ASTCh. 11 - Prob. 11D.1BSTCh. 11 - Prob. 11D.2ASTCh. 11 - Prob. 11D.2BSTCh. 11 - Prob. 11D.3ASTCh. 11 - Prob. 11D.3BSTCh. 11 - Prob. 11D.1ECh. 11 - Prob. 11D.2ECh. 11 - Prob. 11D.3ECh. 11 - Prob. 11D.4ECh. 11 - Prob. 11D.5ECh. 11 - Prob. 11D.6ECh. 11 - Prob. 11D.7ECh. 11 - Prob. 11D.8ECh. 11 - Prob. 11D.9ECh. 11 - Prob. 11D.10ECh. 11 - Prob. 11D.11ECh. 11 - Prob. 11D.12ECh. 11 - Prob. 11D.13ECh. 11 - Prob. 11D.14ECh. 11 - Prob. 11D.15ECh. 11 - Prob. 11D.16ECh. 11 - Prob. 11D.17ECh. 11 - Prob. 11D.18ECh. 11 - Prob. 11D.19ECh. 11 - Prob. 11D.20ECh. 11 - Prob. 11D.21ECh. 11 - Prob. 11D.22ECh. 11 - Prob. 11D.23ECh. 11 - Prob. 11D.24ECh. 11 - Prob. 11D.25ECh. 11 - Prob. 11D.26ECh. 11 - Prob. 11D.27ECh. 11 - Prob. 11D.28ECh. 11 - Prob. 11D.29ECh. 11 - Prob. 11D.30ECh. 11 - Prob. 11D.31ECh. 11 - Prob. 11D.32ECh. 11 - Prob. 11D.33ECh. 11 - Prob. 11D.34ECh. 11 - Prob. 11D.35ECh. 11 - Prob. 11D.36ECh. 11 - Prob. 11E.1ASTCh. 11 - Prob. 11E.1BSTCh. 11 - Prob. 11E.2ASTCh. 11 - Prob. 11E.2BSTCh. 11 - Prob. 11E.1ECh. 11 - Prob. 11E.3ECh. 11 - Prob. 11E.4ECh. 11 - Prob. 11E.5ECh. 11 - Prob. 11E.7ECh. 11 - Prob. 11E.8ECh. 11 - Prob. 11E.9ECh. 11 - Prob. 11E.10ECh. 11 - Prob. 11E.11ECh. 11 - Prob. 11E.12ECh. 11 - Prob. 11E.13ECh. 11 - Prob. 11E.14ECh. 11 - Prob. 11E.15ECh. 11 - Prob. 11E.16ECh. 11 - Prob. 11E.17ECh. 11 - Prob. 11E.18ECh. 11 - Prob. 11E.19ECh. 11 - Prob. 11E.20ECh. 11 - Prob. 11E.21ECh. 11 - Prob. 11E.22ECh. 11 - Prob. 11E.23ECh. 11 - Prob. 11E.24ECh. 11 - Prob. 11E.25ECh. 11 - Prob. 11E.26ECh. 11 - Prob. 11E.27ECh. 11 - Prob. 11E.28ECh. 11 - Prob. 11.1ECh. 11 - Prob. 11.2ECh. 11 - Prob. 11.3ECh. 11 - Prob. 11.4ECh. 11 - Prob. 11.5ECh. 11 - Prob. 11.6ECh. 11 - Prob. 11.7ECh. 11 - Prob. 11.8ECh. 11 - Prob. 11.9ECh. 11 - Prob. 11.10ECh. 11 - Prob. 11.11ECh. 11 - Prob. 11.12ECh. 11 - Prob. 11.13ECh. 11 - Prob. 11.14ECh. 11 - Prob. 11.15ECh. 11 - Prob. 11.16ECh. 11 - Prob. 11.17ECh. 11 - Prob. 11.18ECh. 11 - Prob. 11.19ECh. 11 - Prob. 11.20ECh. 11 - Prob. 11.21ECh. 11 - Prob. 11.23ECh. 11 - Prob. 11.24ECh. 11 - Prob. 11.25ECh. 11 - Prob. 11.26ECh. 11 - Prob. 11.27ECh. 11 - Prob. 11.28ECh. 11 - Prob. 11.29ECh. 11 - Prob. 11.30ECh. 11 - Prob. 11.31ECh. 11 - Prob. 11.32ECh. 11 - Prob. 11.33ECh. 11 - Prob. 11.34ECh. 11 - Prob. 11.35ECh. 11 - Prob. 11.36ECh. 11 - Prob. 11.37ECh. 11 - Prob. 11.38ECh. 11 - Prob. 11.41ECh. 11 - Prob. 11.42ECh. 11 - Prob. 11.43ECh. 11 - Prob. 11.44ECh. 11 - Prob. 11.45ECh. 11 - Prob. 11.47ECh. 11 - Prob. 11.49ECh. 11 - Prob. 11.50ECh. 11 - Prob. 11.51ECh. 11 - Prob. 11.52ECh. 11 - Prob. 11.53ECh. 11 - Prob. 11.54ECh. 11 - Prob. 11.55ECh. 11 - Prob. 11.56ECh. 11 - Prob. 11.57E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Complete and balance the following combustion reactions. Assume that each hydrocarbon is converted completely to carbon dioxide and water. (a) Propane + O2 (b) Octane + O2 (c) Cyclohexane + O2 (d) 2-Methylpentane + O2arrow_forwardWhat is the difference in bonding and in general molecular formula between an alkene and a cycloalkane with the same number of carbon atoms?arrow_forwardGasohol is a mixture of 90% gasoline and 10% ethanol, CH 3CH 2OH. Ethanol is considered an environmentally friendly fuel additive because it can be made from a renewable source—sugarcane. Ethanol burns in air to form CO 2 and H 2O, and, like the combustion of alkanes, this reaction also releases a great deal of energy. Write a balanced equation for the combustion of ethanol.arrow_forward
- Alcohols A, B, and C all have the composition C4H10O. Molecules of alcohol A contain a branched carbon chain and can be oxidized to an aldehyde; molecules of alcohol B contain a linear carbon chain and can be oxidizedto a ketone; and molecules of alcohol C can be oxidized to neither an aldehyde nor a ketone. Write the Lewis structures of these molecules.arrow_forwardCompounds such as CH are formed when fractions of crude oil are cracked. State what is meant by the term cracking when applied to processing a fraction obtained from crude oil. ) Write an equation to show the cracking of the hydrocarbon octane into C₂H 8 and a saturated hydrocarbon as the only products.arrow_forwardHalogenoalkanes undergo two different types of reaction, substitution and elimination reactions depending on the conditions. Use the reaction between 2-bromopropane and sodium hydroxide to explain the chemical reactions of haloalkanes. You must include the following in your explanation: Describe what change is taking place to the halogenoalkane and the product(s) formed. The reaction equations The conditions under which the reactions occur.arrow_forward
- Write the structural formula of 2-ethyl-1-butenearrow_forward38. Using a catalyst, two gaseous hydrocarbons, X and Y, were produced from heating hexane, C6H14. The gases were individually tested with aqueous bromine. For X, aqueous bromine became colorless, while for Y, the reddish-brown color of aqueous bromine was retained. Which of the following best describes the identity of the two hydrocarbons? (A) X= alkane, Y = alkene (B) X = alkene, Y = alkane (C) Both X and Y contain the same number of carbon atoms. (D) Both X and Y contain the same number of hydrogen atoms.arrow_forward(a) What structural feature is associated with each type of hydrocarbon: alkane, cycloalkane, alkene, and alkyne?(b) Give the general formula for each type.(c) Which hydrocarbons are considered saturated?arrow_forward
- Write the formula of an alkene containing 19 carbon atoms.arrow_forwardHalogenoalkanes undergo two different types of reaction, substitution and elimination reactions depending on the conditions. Use the reaction between 2-bromopropane and sodium hydroxide to explain the chemical reactions of haloalkanes. You must include the following in your explanation: Describe what change is taking place to the halogenoalkane and the product(s) formed. The reaction equations The conditions under which the reactions occur. please provide a written explain as wellarrow_forwardWith the catalyst AlCl3 present, which reactant is needed to convert benzene to ethylbenzene?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chapter 4 Alkanes and Cycloalkanes Lesson 2; Author: Linda Hanson;https://www.youtube.com/watch?v=AL_CM_Btef4;License: Standard YouTube License, CC-BY
Chapter 4 Alkanes and Cycloalkanes Lesson 1; Author: Linda Hanson;https://www.youtube.com/watch?v=PPIa6EHJMJw;License: Standard Youtube License