Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat supply in the boiler for this cycle per unit of boiler flow rate.
10–57 Reconsider Prob. 10–55. Determine the thermal efficiency of the regenerative Rankine cycle when the isentropic efficiency of the turbine is 90 percent before and after the steam extraction point.
Want to see the full answer?
Check out a sample textbook solutionChapter 10 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Additional Engineering Textbook Solutions
Fundamentals Of Thermodynamics
Vector Mechanics for Engineers: Statics, 11th Edition
Vector Mechanics for Engineers: Statics and Dynamics
Fundamentals of Aerodynamics
Engineering Mechanics: Statics & Dynamics (14th Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- Consider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the volume flow rate of sea water (S.G. = 1.05) used in the condenser, if the allowable temperature rise is 5°C. Assume an isentropic efficiency of 87% for both the turbine and the pump.arrow_forwardA power plant is to be operated on a Rankine Cycle with superheated steam exiting the boiler at 4 MPa and 500°C. The condenser pressure is 20 kPa. Compute the electrical output in MW if the mass flow rate of the steam is 12.345 kg/s, and the mechanical and generator efficiencies are 90% and 87%, respectively.arrow_forwardconsider a simple ideal Rankine cycle with water as the working fluid. The boiler operates at 2 MPa, while the condenser operates at 75 kPa.Determine the minimum temperature at the turbine inlet such that the quality of the steam in the turbine outlet is at least 90%What is the power output at these conditions, if the mass flow of the water is 5 kg/s?arrow_forward
- A 259-MW steam power plant operates on the Rankine cycle but with turbine and pump efficiencies of 90%. The steam enters the turbine at 10,000 kPa and 550°C. It discharges to the condenser at 50 kPa. Determine the rate of heat rejection to the environment in the condenser in MW.arrow_forwardIn a Rankine cycle with reheating, the steam leaves the boiler at 2.5 MPa and 600 ºC and enters the high pressure turbine where it expands to a pressure of 1 MPa to be then subjected to a reheating process from where it leaves at 1 MPa and 600 ° C. The steam at these conditions enters the low pressure turbine and expands up to the condenser pressure of 50 kPa. The heat that is extracted in the condenser is 1500 kJ / s. If the adiabatic efficiency of the turbines and the pump is 95%, determine the total heat flow in kJ / s delivered to the boiler.arrow_forwardA power plant is to be operated on an ideal Rankine cycle with the superheatedsteam exiting the boiler at 4 MPa and 500°C. Calculate the thermal efficiencyand the quality at the turbine outlet if the condenser pressure is (a) 20 kPa,(b) 10 kPa, and (c) 8 kPa.arrow_forward
- Consider a 150-MW steam power plant that operates on a simple Rankine cycle. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at 10 kPa. Calculate the mass flow rate of steam produced by the boiler. Assume an isentropic efficiency of 87% for both the turbine and the pump.arrow_forwardThis is an Open feedwater not a closed feedwater thank youarrow_forwardConsider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of 75 kPa. Determine the thermal efficiency of this cyclearrow_forward
- A simple ideal Rankine cycle with water as the working fluid operates between the pressure limits of 3 MPa in the boiler and 30 kPa in the condenser. If the quality at the exit of the turbine cannot be less than 79 percent, what is the maximum thermal efficiency this cycle can have? Use steam tables. The maximum thermal efficiency isarrow_forwardQI) Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 6 MPa and 500°C and is cooled in the condenser at a pressure of 20 kPa by running cooling water from a lake through the tubes of the condenser at a rate of 2000 kg/s. Show the cycle on a T-s diagram with respect to saturation lines, and determine: The thermal efficiency of the cycle?arrow_forwardI need the answer quicklyarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY