(a)
The mass flow rate of air in the gas-turbine cycle.
(a)
Answer to Problem 105RP
The mass flow rate of air in the gas-turbine cycle is
Explanation of Solution
Show the T-s diagram as in Figure (1).
Express Prandtl number at state 8s.
Here, pressure at state 8s is
Express enthalpy at state 8.
Here, enthalpy at state 7 is
Express Prandtl number at state 10s.
Here, pressure at state 10s is
Express enthalpy at state 10.
Here, enthalpy at state 9 is
Express enthalpy at state 1.
Here, enthalpy of saturation liquid at pressure of
Express specific volume at state 1.
Here, specific volume of saturation liquid at pressure of
Express initial work input.
Here, pressure at state 2 and 1 is
Express enthalpy at state 2.
Express quality at state 4s.
Here, entropy at state 4s is
Express enthalpy at state 4s.
Here, enthalpy at saturation liquid and evaporation at pressure of
Express enthalpy at state 4.
Here, enthalpy at state 3 is
Express quality at state 6s.
Here, entropy at state 6s is
Express enthalpy at state 6s.
Here, enthalpy at saturation liquid and evaporation at pressure of
Express enthalpy at state 6.
Here, enthalpy at state 5 is
Express the mass flow rate of air in the gas-turbine cycle from energy balance equation.
Here, enthalpy at state 10 is
Conclusion:
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 7 and Prandtl number at state 7 corresponding to temperature at state 7 of
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 8s corresponding to Prandtl number at state 8s of
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is Prandtl number at state8s and enthalpy at state 8s respectively.
Show the enthalpy at state 8s corresponding to Prandtl number as in Table (1).
Prandtl number at state 8s |
Enthalpy at state 8s |
9.684 | 523.63 |
9.849 | |
10.37 | 533.98 |
Substitute
Thus, enthalpy at state 8s corresponding to Prandtl number at state 8s of
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 9 and Prandtl number at state 9 corresponding to temperature at state 9 of
Here, enthalpy at state 9 is
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 10s corresponding to Prandtl number at state 10s of
Show the enthalpy at state 10s corresponding to Prandtl number as in Table (2).
Prandtl number at state 10s |
Enthalpy at state 10s |
52.59 | 843.98 |
56.3 | |
57.60 | 866.08 |
Use excels and substitutes the values from Table (II) in Equation (XVI) to get,
Here, enthalpy at state 10s is
Substitute
Refer Table A-17, “ideal gas properties of air”, and write the enthalpy at state 11 corresponding to temperature at state 11 of
Here, enthalpy at state 11 is
Refer Table A-5, “saturated water-pressure table”, and write the properties at pressure of
Substitute
Substitute
Substitute
Substitute
Refer Table A-6, “superheated water”, and write the properties corresponding to pressure at state 3 of
Here, enthalpy and entropy at state 3 is
Due to throttling process, entropy at state 3 is equal to entropy at state 4s.
Refer Table A-5, “saturated water-pressure table”, and write the properties corresponding to pressure of
Substitute
Substitute
Substitute
Refer Table A-6, “superheated water”, and write the properties corresponding to pressure at state 5 of
Here, enthalpy and entropy at state 5 is
Due to throttling process, entropy at state 5 is equal to entropy at state 6s.
Refer Table A-5, “saturated water-pressure table”, and write the properties corresponding to pressure of
Substitute
Substitute
Substitute
Substitute
Hence, the mass flow rate of air in the gas-turbine cycle is
(b)
The rate of total heat input.
(b)
Answer to Problem 105RP
The rate of total heat input is
Explanation of Solution
Express the rate of total heat input.
Conclusion:
Substitute
Hence, the rate of total heat input is
(c)
The thermal efficiency of the combined cycle.
(c)
Answer to Problem 105RP
The thermal efficiency of the combined cycle is
Explanation of Solution
Express the rate of total heat output.
Express the thermal efficiency of the combined cycle.
Conclusion:
Substitute
Substitute
Hence, the thermal efficiency of the combined cycle is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- calculate their DoF using Gruebler's formula. PUNTO 6. PUNTO 7. (Ctrl)arrow_forwardA pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.given that: summation of K gate valve = 0.25check valve=390 degree elbow= 0.75foot valve= 0.78arrow_forwardA pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.arrow_forward
- The tensile 0.2 percent offset yield strength of AISI 1137 cold-drawn steel bars up to 1 inch in diameter from 2 mills and 25 heats is reported as follows: Sy 93 95 101 f 97 99 107 109 111 19 25 38 17 12 10 5 4 103 105 4 2 where Sy is the class midpoint in kpsi and fis the number in each class. Presuming the distribution is normal, determine the yield strength exceeded by 99.0% of the population. The yield strength exceeded by 99.0% of the population is kpsi.arrow_forwardSolve this problem and show all of the workarrow_forwardI tried to go through this problem but I don't know what I'm doing wrong can you help me?arrow_forward
- Generate the kinematic diagram of the following mechanisms using the given symbols. Then, draw their graphs and calculate their degrees of freedom (DoF) using Gruebler's formula. PUNTO 2. PUNTO 3. !!!arrow_forwardCreate a schematic representation of the following mechanisms using the given symbols and draw their graphs. Then, calculate their degrees of freedom (DoF) using Gruebler's formula. PUNTO 6. PUNTO 7.arrow_forwardhow the kinematic diagram of the following mechanisms would be represented using the given symbols? PUNTO 0. PUNTO 1. °arrow_forward
- Create a schematic representation of the following mechanisms using the given symbols and draw their graphs. Then, calculate their degrees of freedom (DOF) using Gruebler's formula. PUNTO 4. PUNTO 5. (0) Groundarrow_forwardDraw the graph of ALL the mechanisms and calculate their DoF using Gruebler's formula. PUNTO 0. PUNTO 1.arrow_forwardAn adjustable support. Construction designed to carry vertical load and is adjusted by moving the blue attachment vertically. The link is articulated at both ends (free to rotate) and can therefore only transmit power axially. Analytically calculate the force to which the link is subjected? Calculate analytically rated voltage in the middle of the link.? F=20kN Alpha 30 deg Rel 225 Mpans:5arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY