
(a)
The ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle
(a)

Answer to Problem 78P
The ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle is
Explanation of Solution
Draw the T-s diagram for the combined gas-steam power cycle.
Write the expression for the relation relative pressure and ideal pressure.
Here, the relative pressure at state 9 is
Write the expression for the efficiency of compressor.
Refer to properties table of air, and interpret the value of
Write the expression for the relation relative pressure and ideal pressure.
Here, the relative pressure at state 11 is
Write the expression for the efficiency of turbine.
Write the expression for the specific work input of pump I to the system/
Write the expression for the enthalpy of steam at state 2.
Write the expression for the specific work input of pump II to the system/
Write the expression for the enthalpy of steam at state 4.
Write the expression for the quality of steam at state 6s.
Here, specific entropy of wet steam at 0.6 MPa is
Write the expression for the specific enthalpy of steam at state 6s.
Here, specific enthalpy of wet steam at
Write the expression for the efficiency of turbine.
Write the expression for the quality of steam at state 7s.
Here, specific entropy of wet steam at 20 kPa is
Write the expression for the specific enthalpy of steam at state 7s.
Here, specific enthalpy of wet steam at
Write the expression for the efficiency of turbine.
Write the expression for the energy balance equation for the heat exchanger.
Rewrite Equation (1) and rearrange the terms with mass and enthalpy terms.
Here, mass flow rate of steam is
Conclusion:
Refer Table A-17, “Ideal-gas properties of air”, select the relative pressure
Substitute 1.386 kPa for
Refer Table A-17, “Ideal-gas properties of air”, interpret the value of the enthalpy
Refer Table A-17, “Ideal-gas properties of air”, select the relative pressure
Substitute 450.5 kPa for
Refer Table A-17 “Ideal-gas properties of air , interpret the value of
Refer Table A-5, “saturated water-Pressure table”, select the enthalpy
Substitute
Substitute
Refer Table A-5, “saturated water-Pressure table”, select the enthalpy
Substitute
Substitute
Refer Table A-5, “Superheated water”, select the enthalpy
Since, the entropy at state 5 is equal to state 6s, so the entropy value of
Interpret the value of
Substitute
Refer to steam tables, and interpret the value of
Substitute
Since, the entropy at state 5 is equal to the entropy at state 7, the entropy value of
Refer Table A-5, “Saturated water-Pressure table”, obtain the value of
Substitute
Refer Table A-5, “Saturated water-Pressure table”, obtain the value of
Substitute
Substitute
Thus, the ratio of mass flow rate of air to mass flow rate of steam in the combined power cycle is
(b)
The rate of heat input in the combustion chamber.
(b)

Answer to Problem 78P
The rate of heat input in the combustion chamber is
Explanation of Solution
Write the expression for the energy balance equation for the open feed water heater.
Rewrite Equation (3) and rearrange the terms with mass and enthalpy terms.
Here, fraction of steam extracted is y.
Write the expression for the specific power output of the turbine.
Write the expression for the specific net work output from the steam.
Write the expression for the specific net work output from the gas stream.
Write the expression for the net work output per unit mass of gas.
Write the expression for the mass flow rate of air.
Write the expression for the rate of heat input to the cycle.
Conclusion:
Substitute
Substitute 0.86 for
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the rate of heat input in the combustion chamber is
(c)
The thermal efficiency of the combined power cycle
(c)

Answer to Problem 78P
The thermal efficiency of the combined power cycle is
Explanation of Solution
Write the expression for the thermal efficiency of the combined power cycle.
Conclusion:
Substitute
Thus, the thermal efficiency of the combined power cycle is
Want to see more full solutions like this?
Chapter 10 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- For a gas whose equation of state is P(v-b)=RT, the specified heat difference Cp-Cv is equal to which of the following (show all work): (a) R (b) R-b (c) R+b (d) 0 (e) R(1+v/b)arrow_forwardof state is Derive an expression for the specific heat difference of a substance whose equation RT P = v-b a v(v + b)TZ where a and b are empirical constants.arrow_forwardTemperature may alternatively be defined as T = ди v Prove that this definition reduces the net entropy change of two constant-volume systems filled with simple compressible substances to zero as the two systems approach thermal equilibrium.arrow_forward
- Using the Maxwell relations, determine a relation for equation of state is (P-a/v²) (v−b) = RT. Os for a gas whose av Tarrow_forward(◉ Homework#8arrow_forwardHomework#8arrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^ 2. After 2 seconds, how far do the boxes move? A бро Barrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^2. Both boxes are 0.25 m long and 0.25 m high. The cord is attached to the bottom of Box A and the middle of box B. After 2 seconds, how far do the boxes move? A From бро Barrow_forwardHomework#8arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + of 4 D Topic: Kinetics of Particles: - Forces in dynamic system, Free body diagram, newton's laws of motion, and equations of motion. TQ1. The 10-kg block is subjected to the forces shown. In each case, determine its velocity when t=2s if v 0 when t=0 500 N F = (201) N 300 N (b) TQ2. The 10-kg block is subjected to the forces shown. In each case, determine its velocity at s-8 m if v = 3 m/s at s=0. Motion occurs to the right. 40 N F = (2.5 s) N 200 N 30 N (b) TQ3. Determine the initial acceleration of the 10-kg smooth collar. The spring has an unstretched length of 1 m. 1 σ Q ☆ Q 6 ا الى ☑arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + 4 of 4 | D TQ9. If motor M exerts a force of F (10t 2 + 100) N determine the velocity of the 25-kg crate when t kinetic friction between the crate and the plane are μs The crate is initially at rest. on the cable, where t is in seconds, 4s. The coefficients of static and 0.3 and μk = 0.25, respectively. M 3 TQ10. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. Determine the acceleration of the block when s = 0.4 m. The contact surface between the block and the plane is smooth. 0.3 m F= 100 N F= 100 N k = 200 N/m σ Q Q ☆ ا الى 6 ☑arrow_forwardmy ID# is 016948724 please solve this problem step by steparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY