Elementary Statistics
12th Edition
ISBN: 9780321836960
Author: Mario F. Triola
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.5, Problem 12BSC
City Fuel Consumption: Finding the Best Multiple Regression Equation. In Exercises 9-12, refer to the accompanying table, which was obtained using the data from 21 cars listed in Data Set 20 “Car Measurements” in Appendix B. The response (y) variable is CITY (fuel consumption in mi /gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi /gal).
Predictor (x) Variables | P-Value | R2 | Adjusted R2 | Regression Equation |
WT/DISP/HWY | 0.000 | 0.943 | 0.933 | CITY = 6.86 − 0.00128 WT − 0.257 DISP + 0.652 HWY |
WT/DISP | 0.000 | 0.748 | 0.720 | CITY = 38.0 − 0.00395 WT − 1.29 DISP |
WT/HWY | 0.000 | 0.942 | 0.935 | CITY = 6.69 − 0.00159 WT + 0.670 HWY |
DISP/HWY | 0.000 | 0.935 | 0.928 | CITY 1.87 − 0.625 DISP + 0.706 HWY |
WT | 0.000 | 0.712 | 0.697 | CITY = 41.8 − 0.00607 WT |
DISP | 0.000 | 0.659 | 0.641 | CITY = 29.0 − 2.98 DISP |
HWY | 0.000 | 0.924 | 0.920 | CITY = −3.15+ 0.819 HWY |
12. A Honda Civic weighs 2740 lb, it has an engine displacement of 1.8 L, and its highway fuel consumption is 36 mi/gal. What is the best predicted value of the city fuel consumption? Is that predicted value likely to be a good estimate? Is that predicted value likely to be very accurate?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The data used is from college campuses. The variables used in the analysis below include: crime, total campus crime; enroll, total
enrollment; police, employed officers. Use the estimated OLS models to answer the questions below:
Model A:
In(crime) = -6.631 + 1.270ln(enroll),
(1.034)
(.110)
.5804
n = 97; R² =
Model B:
In(crime) = -4.794+.923ln(enroll) +.516ln(police),
(.144)
(.149)
(1.112)
n = 97; R² = .632
Using Model A, test the null hypothesis that elasticity of crime with respect to enrollment is unit elastic, i.e. equal to one (against a
two-sided alternative). What is the conclusion of your test using a significance level of .01?
Reject
Fail to reject
O Not enough information.
The data used is from college campuses. The variables used in the analysis below include: crime, total campus crime; enroll, total
enrollment; police, employed officers. Use the estimated OLS models to answer the questions below:
Model A:
In(crime) = -6.631 + 1.270ln(enroll),
(1.034) (.110)
n = 97; R² = .5804
Model B:
In(crime) = -4.794 + .923ln(enroll)
(.144)
(1.112)
n = 97; R² = .632
+.516ln(police),
(.149)
Using Model A, test the null hypothesis that elasticity of crime with respect to enrollment is unit elastic, i.e. equal to one (against a
two-sided alternative). Calculate the t-statistic.
D& T LTD marketing team needed more information about the effectiveness of their 3 main mode of advertising. To determine which type is the most effective, the manager collected one week’s data from 25 randomly selected stores. For each store, the following variables were recorded:
Weekly gross sales
Weekly expenditure on direct mailing (Direct)
Weekly expenditure on newspaper advertising (Newspaper)
Weekly expenditure on television commercials (Television)
Following is the regression output based on the above-mentioned data.
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.442…
Chapter 10 Solutions
Elementary Statistics
Ch. 10.2 - Notation For each of several randomly selected...Ch. 10.2 - Physics Experiment A physics experiment consists...Ch. 10.2 - Cause of High Blood Pressure Some studies have...Ch. 10.2 - Notation What is the difference between the...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Cereal Killers The amounts of sugar (grams of...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...
Ch. 10.2 - Outlier Refer in the accompanying...Ch. 10.2 - Clusters Refer to the following Minitab-generated...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 14BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 19BSCCh. 10.2 - Prob. 20BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 23BSCCh. 10.2 - Prob. 24BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 26BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Appendix B Data Sets. In Exercises 29-34, use the...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Transformed Data In addition to testing for a...Ch. 10.2 - Prob. 34BBCh. 10.3 - Notation and Terminology If we use the paired...Ch. 10.3 - Best-Fit Line In what sense is the regression line...Ch. 10.3 - Prob. 3BSCCh. 10.3 - Notation What is the difference between the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Effects of an Outlier Refer to the Mini...Ch. 10.3 - Effects of Clusters Refer to the Minitab-generated...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Prob. 31BSCCh. 10.3 - Large Data Sets. Exercises 29-32 use the same...Ch. 10.3 - Prob. 33BBCh. 10.3 - Prob. 34BBCh. 10.4 - Prob. 1BSCCh. 10.4 - Prediction Interval Using the heights and weights...Ch. 10.4 - Prob. 3BSCCh. 10.4 - Prob. 4BSCCh. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Prob. 9BSCCh. 10.4 - Prob. 10BSCCh. 10.4 - Prob. 11BSCCh. 10.4 - Prob. 12BSCCh. 10.4 - Prob. 13BSCCh. 10.4 - Prob. 14BSCCh. 10.4 - Prob. 15BSCCh. 10.4 - Prob. 16BSCCh. 10.4 - Variation and Prediction Intervals. In Exercises...Ch. 10.4 - Prob. 18BSCCh. 10.4 - Prob. 19BSCCh. 10.4 - Prob. 20BSCCh. 10.4 - Confidence Intervals for 0 and 1 Confidence...Ch. 10.4 - Confidence Interval for Mean Predicted Value...Ch. 10.5 - Prob. 1BSCCh. 10.5 - Best Multiple Regression Equation For the...Ch. 10.5 - Adjusted Coefficient of Determination For Exercise...Ch. 10.5 - Interpreting R2 For the multiple regression...Ch. 10.5 - Prob. 5BSCCh. 10.5 - Prob. 6BSCCh. 10.5 - Prob. 7BSCCh. 10.5 - Prob. 8BSCCh. 10.5 - Prob. 9BSCCh. 10.5 - Prob. 10BSCCh. 10.5 - Prob. 11BSCCh. 10.5 - City Fuel Consumption: Finding the Best Multiple...Ch. 10.5 - Prob. 13BSCCh. 10.5 - Prob. 14BSCCh. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Prob. 17BBCh. 10.5 - Prob. 18BBCh. 10.5 - Dummy Variable Refer to Data Set 9 Bear...Ch. 10.6 - Prob. 1BSCCh. 10.6 - Prob. 2BSCCh. 10.6 - Super Bowl and R2 Let x represent years coded as...Ch. 10.6 - Prob. 4BSCCh. 10.6 - Prob. 5BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 7BSCCh. 10.6 - Prob. 8BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 11BSCCh. 10.6 - Prob. 12BSCCh. 10.6 - Prob. 13BSCCh. 10.6 - Prob. 14BSCCh. 10.6 - Prob. 15BSCCh. 10.6 - Prob. 16BSCCh. 10.6 - Prob. 18BBCh. 10 - The exercises arc based on the following sample...Ch. 10 - Prob. 2CQQCh. 10 - Prob. 3CQQCh. 10 - The exercises are based on the following sample...Ch. 10 - The exercises are based on the following sample...Ch. 10 - Prob. 6CQQCh. 10 - Prob. 7CQQCh. 10 - Prob. 8CQQCh. 10 - Prob. 9CQQCh. 10 - Prob. 10CQQCh. 10 - Old Faithful The table below lists measurements...Ch. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 1CRECh. 10 - Prob. 2CRECh. 10 - Prob. 3CRECh. 10 - Prob. 4CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 6CRECh. 10 - Prob. 7CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 9CRECh. 10 - Prob. 10CRECh. 10 - Critical Thinking: Is replication validation? The...Ch. 10 - Prob. 2FDDCh. 10 - Prob. 3FDD
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardFor the following exercises, use Table 4 which shows the percent of unemployed persons 25 years or older who are college graduates in a particular city, by year. Based on the set of data given in Table 5, calculate the regression line using a calculator or other technology tool, and determine the correlation coefficient. Round to three decimal places of accuracyarrow_forwardLife Expectancy The following table shows the average life expectancy, in years, of a child born in the given year42 Life expectancy 2005 77.6 2007 78.1 2009 78.5 2011 78.7 2013 78.8 a. Find the equation of the regression line, and explain the meaning of its slope. b. Plot the data points and the regression line. c. Explain in practical terms the meaning of the slope of the regression line. d. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 2019? e. Based on the trend of the regression line, what do you predict as the life expectancy of a child born in 1580?2300arrow_forward
- Five pairs of data are used in determining a regression line ŷ = -3 + 4x. If the five values of the explanatory variable are 28, 45, 16, 41, and 20, respectively, what is the mean of the five values of the response variable?arrow_forwardA linear relationship between EmployeeSalary (Dependent) and degree(independent) has the following equation : Salary = 400+0.2 (Degree). SST= 736, SSR= 385. Calculate and interpret the coefficient of determination (r2) : Select one: O a. 0.48 , 47.69 percent of the variability in employee salary can be explained by the simple linear regression equation Ob. 0.52,52.31 percent of the variability in employee salary can be explained by the simple linear regression equation Oc. 0.48, 47.69 percent of the variability in the degree earned can be explained by the simple linear regression equation F Od. 0.52, 52.31 percent of the variability in the degree earned can be explained by the simple linear regression equation Next page JUN 2 12 étv W Ps Lrarrow_forwardConsumers are often interested in the fuel efficiency of the vehicles they choose to buy, so much so that they will research the various models they consider buying. Fuel efficiency can depend on a variety of variables. In this analysis, there are 73 automobiles that are popular with consumers. A regression analysis has been performed; the dependent variable is CityMPG (EPA miles per gallon in city driving), and independent variables are Length (vehicle length in inches), Width (vehicle width in inches), Weight (vehicle weight in pounds), and ManTran (1 if manual shift transmission, 0 otherwise). The level of significance is 0.05. Use the following MegaStat output to answer questions about this regression analysis. a. State the regression equation. b. How would CityMPG be affected if the width of a vehicle increased by an inch? c. Estimate the CityMPG for a vehicle with a length of 190 inches, a width of 75 inches, a weight of 4100 pounds, and a manual. Round your answer to the nearest…arrow_forward
- Medical professionals need to know the absorption rate of caffeine in the bloodstream. In a study of the relationship between caffeine intake (in milligrams) and absorption (in parts per million) by the bloodstream, scientists computed the regression of caffeine and absorption rate. The 12 volunteers used in the study were given caffeine tablets with as few as 216 mg and as many as 410 mg. Absorption rates ranged from 3600 ppm to 7800 ppm. Some computer output from a regression analysis of these data is shown below. a) What is the equation of the least squares regression line that describes the relationship between caffeine intake and absorption in the bloodstream? Define any variables used in this equation. b) What is the value of the correlation coefficient for caffeine intake and absorption rate? Interpret this correlation. c) Suppose that you want to describe the relationship between caffeine intake and absorption rate only in the range of 250 to 350…arrow_forwardBeachcomber Ltd in a local car dealership that sells used and new vehicles. The manager of the company wants to know how different variables affect the sales of his vehicles. A random sample of yearly data was taken with the view to testing the model: SALES=?+?AGE+?MIL+?ENG Where SALES= amount that a vehicle is sold for($000’s), AGE = age of the vehicle, MIL= the total mileage of the vehicle at the point of sale and ENG = the size of the engine. The sample of data was processed using MINITAB and the following is an extract of the output obtained: d) Hence test whether ? is significant. Give reasons for your answer. e) Perform the F Test making sure to state the null and alternative hypothesis. f) Given an interpretation of the term “R-sq” and comment on its value.arrow_forwardBeachcomber Ltd in a local car dealership that sells used and new vehicles. The manager of the company wants to know how different variables affect the sales of his vehicles. A random sample of yearly data was taken with the view to testing the model: SALES=?+?AGE+?MIL+?ENG Where SALES= amount that a vehicle is sold for($000’s), AGE = age of the vehicle, MIL= the total mileage of the vehicle at the point of sale and ENG = the size of the engine. The sample of data was processed using MINITAB and the following is an extract of the output obtained: a) What is dependent and independent variables? b) Fully write out the regression equation c) Fill in the missing values ‘*’, ‘**’, and ‘***’.arrow_forward
- The owener of a winery collects data on competing wineries every year. He would like to predict the gross sales (in number of cases) from the size of the wineries (in acres). What is the explanatory variable in this study?arrow_forwardThe regional transit authority for a major metropolitan area wants to determine whetherthere is a relationship between the age of a bus and the annual maintenance cost. A sampleof ten buses resulted in the following data: a. Develop a scatter chart for these data. What does the scatter chart indicate about therelationship between age of a bus and the annual maintenance cost?b. Use the data to develop an estimated regression equation that could be used to predictthe annual maintenance cost given the age of the bus. What is the estimated regressionmodel?c. Test whether each of the regression parameters b0 and b1 is equal to zero at a 0.05level of significance. What are the correct interpretations of the estimated regressionparameters? Are these interpretations reasonable?d. How much of the variation in the sample values of annual maintenance cost does themodel you estimated in part b explain?e. What do you predict the annual maintenance cost to be for a 3.5-year-old bus?arrow_forward2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY