Elementary Statistics
12th Edition
ISBN: 9780321836960
Author: Mario F. Triola
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.3, Problem 16BSC
Regression and Predictions. Exercises 13-28 use the same data sets as Exercises 13-28 in Section 10-2. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted value by following the prediction procedure summarized in Figure 10-5.
16. Altitude and Temperature At 6327 ft (or 6.327 thousand feet), the author recorded the temperature. Find the best predicted temperature at that altitude. How does the result compare to the actual recorded value of 48°F?
Altitude | 3 | 10 | 14 | 22 | 28 | 31 | 33 |
Temperature | 57 | 37 | 24 | −5 | −30 | −41 | −54 |
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refer to the data set: Part a: Make a scatterplot and determine which type of model best fits the data.Part b: Find the regression equation, round to two decimal places if necessary.Part c: Use the equation from Part b to determine y when x = -3.6.
Find the regression equation, letting the first variable be the predictor (x) variable. Using the listed actress/actor ages in various years, find the best predicted age of the Best Actor winner given that the age of the Best Actress winner that year is 28 years. Is the result within 5 years of the actual Best Actor winner, whose age was 39 years?
Best Actress: 29; 29; 28; 64; 34; 35; 44; 29; 65; 23; 46; 54
Best Actor: 43; 39; 39; 43; 53; 46; 58; 52; 39; 56; 44; 35
Find the equation of the regression line.
y(carety)=____ + ______x
The best predicted age of the Best Actor winner given that the age of the Best Actress winner that year is 28 years is _____ years old.
Number 16
Chapter 10 Solutions
Elementary Statistics
Ch. 10.2 - Notation For each of several randomly selected...Ch. 10.2 - Physics Experiment A physics experiment consists...Ch. 10.2 - Cause of High Blood Pressure Some studies have...Ch. 10.2 - Notation What is the difference between the...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Cereal Killers The amounts of sugar (grams of...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...
Ch. 10.2 - Outlier Refer in the accompanying...Ch. 10.2 - Clusters Refer to the following Minitab-generated...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 14BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 19BSCCh. 10.2 - Prob. 20BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 23BSCCh. 10.2 - Prob. 24BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 26BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Appendix B Data Sets. In Exercises 29-34, use the...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Transformed Data In addition to testing for a...Ch. 10.2 - Prob. 34BBCh. 10.3 - Notation and Terminology If we use the paired...Ch. 10.3 - Best-Fit Line In what sense is the regression line...Ch. 10.3 - Prob. 3BSCCh. 10.3 - Notation What is the difference between the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Effects of an Outlier Refer to the Mini...Ch. 10.3 - Effects of Clusters Refer to the Minitab-generated...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Prob. 31BSCCh. 10.3 - Large Data Sets. Exercises 29-32 use the same...Ch. 10.3 - Prob. 33BBCh. 10.3 - Prob. 34BBCh. 10.4 - Prob. 1BSCCh. 10.4 - Prediction Interval Using the heights and weights...Ch. 10.4 - Prob. 3BSCCh. 10.4 - Prob. 4BSCCh. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Prob. 9BSCCh. 10.4 - Prob. 10BSCCh. 10.4 - Prob. 11BSCCh. 10.4 - Prob. 12BSCCh. 10.4 - Prob. 13BSCCh. 10.4 - Prob. 14BSCCh. 10.4 - Prob. 15BSCCh. 10.4 - Prob. 16BSCCh. 10.4 - Variation and Prediction Intervals. In Exercises...Ch. 10.4 - Prob. 18BSCCh. 10.4 - Prob. 19BSCCh. 10.4 - Prob. 20BSCCh. 10.4 - Confidence Intervals for 0 and 1 Confidence...Ch. 10.4 - Confidence Interval for Mean Predicted Value...Ch. 10.5 - Prob. 1BSCCh. 10.5 - Best Multiple Regression Equation For the...Ch. 10.5 - Adjusted Coefficient of Determination For Exercise...Ch. 10.5 - Interpreting R2 For the multiple regression...Ch. 10.5 - Prob. 5BSCCh. 10.5 - Prob. 6BSCCh. 10.5 - Prob. 7BSCCh. 10.5 - Prob. 8BSCCh. 10.5 - Prob. 9BSCCh. 10.5 - Prob. 10BSCCh. 10.5 - Prob. 11BSCCh. 10.5 - City Fuel Consumption: Finding the Best Multiple...Ch. 10.5 - Prob. 13BSCCh. 10.5 - Prob. 14BSCCh. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Prob. 17BBCh. 10.5 - Prob. 18BBCh. 10.5 - Dummy Variable Refer to Data Set 9 Bear...Ch. 10.6 - Prob. 1BSCCh. 10.6 - Prob. 2BSCCh. 10.6 - Super Bowl and R2 Let x represent years coded as...Ch. 10.6 - Prob. 4BSCCh. 10.6 - Prob. 5BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 7BSCCh. 10.6 - Prob. 8BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 11BSCCh. 10.6 - Prob. 12BSCCh. 10.6 - Prob. 13BSCCh. 10.6 - Prob. 14BSCCh. 10.6 - Prob. 15BSCCh. 10.6 - Prob. 16BSCCh. 10.6 - Prob. 18BBCh. 10 - The exercises arc based on the following sample...Ch. 10 - Prob. 2CQQCh. 10 - Prob. 3CQQCh. 10 - The exercises are based on the following sample...Ch. 10 - The exercises are based on the following sample...Ch. 10 - Prob. 6CQQCh. 10 - Prob. 7CQQCh. 10 - Prob. 8CQQCh. 10 - Prob. 9CQQCh. 10 - Prob. 10CQQCh. 10 - Old Faithful The table below lists measurements...Ch. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 1CRECh. 10 - Prob. 2CRECh. 10 - Prob. 3CRECh. 10 - Prob. 4CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 6CRECh. 10 - Prob. 7CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 9CRECh. 10 - Prob. 10CRECh. 10 - Critical Thinking: Is replication validation? The...Ch. 10 - Prob. 2FDDCh. 10 - Prob. 3FDD
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Does Table 1 represent a linear function? If so, finda linear equation that models the data.arrow_forwardOlympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardFind the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forward
- What does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forwardPart a: Make a scatter plot and determine which type of model best fits the data.Part b: Find the regression equation.Part c: Use the equation from Part b to determine y when x = 7.arrow_forwardFind the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city. Height, x Stories, y (b) x = 649 feet (d) x = 724 feet 766 620 520 508 494 484 (a) x = 503 feet 51 46 44 43 39 38 (c) x = 318 feet Find the regression equation. (Round the slope to three decimal places as needed. Round the y-intercept to two decimal places as needed.) Choose the correct graph below. O A. O B. O C. O D. 60- 60- 60 60- 0- 800 800 800 Height (feet 800 Height (feet) Height (Teet) Stories Stories:arrow_forward
- Find the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city. Height, x Stories, y (a) x = 499 feet (c) x = 798 feet (b) x= 646 feet (d) x = 734 feet 766 620 520 508 494 484 51 46 44 42 39 37 Find the regression equation. y x+ (O (Round the slope to three decimal places as needed. Round the y-intercept to two decimal places as needed.) Choose the correct graph below. O A. O B Oc. OD 60- 60- 60- 60 - 04 04 0- 800 800 800 Height (feet) 800 Height (feet) Height (feet) Height (feet) (a) Predict the value of y for x= 499. Choose the correct answer below. O A. 50 O B. 46 O C. 40 O D. not meaningful (b) Predict the value of y for x=646, Choose the correct…arrow_forwardFind the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city. Height, x Stories, y 519 (a) x = 500 feet (c) x = 810 feet (b) x = 649 feet (d) x = 732 feet 775 619 508 491 474 36 53 47 44 43 37 Find the regression equation. y=x+ O (Round the slope to three decimal places as needed. Round the y-intercept to two decimal places as needed.) Choose the correct graph below. OA. 60- 60- 60- 60- 800 Height (feet) 800 Height (feet) 800 Height (feet) Height (feet) (a) Predict the value of y for x = 500. Choose the correct answer below. A. 52 В. 40 C. 48 D. not meaningful (b) Predict the value of y for x = 649. Choose the correct answer below. A. 56 В. 48 O C. 40…arrow_forwardFind the equation of the regression line for the given data. Then construct a scatter plot of the data and draw the regression line. (The pair of variables have a significant correlation.) Then use the regression equation to predict the value of y for each of the given x-values, if meaningful. The table below shows the heights (in feet) and the number of stories of six notable buildings in a city. (a) x = 499 feet (c) x = 798 feet (b) x = 652 feet (d) x = 736 feet 619 519 508 491 474 Height, x Stories, y 775 53 47 44 43 39 37 Find the regression equation. (Round the slope to three decimal places as needed. Round the y-intercept to two decimal places as needed.)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY