Elementary Statistics
12th Edition
ISBN: 9780321836960
Author: Mario F. Triola
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.3, Problem 32BSC
Large Data Sets. Exercises 29-32 use the same Appendix B data sets as Exercises 29-32 in Section 10-2. In each case, find the regression equation, letting the first variable be the predictor (x) variable. Find the indicated predicted values following the prediction procedure summarized in Figure 10-5.
32. Earthquakes Refer to Data Set 16 in Appendix B and use the magnitudes and depths from the earthquakes. Find the best predicted depth of an earthquake with a magnitude of 1.50.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Number 25
Section 10.2
Question #9
The data show the bug chirps per minute at different temperatures. Find the regression equation, letting the first variable be the independent (x) variable. Find the best predicted temperature for a time when a bug is chirping at the rate of 3000 chirps per minute. Use a significance level of 0.05. What is wrong with this predicted value?
Chirps in 1 min
981
1023
1074
1101
1203
874
Temperature
(°F)
83
79.4
80.9
82.8
92.3
72.8
What is the regression equation?
y= ___________+ ___________x
(Round the x-coefficient to four decimal places as needed. Round the constant to two decimal places as needed.)
What is the best predicted temperature for a time when a bug is chirping at the rate of 3000 chirps per minute?
The best predicted temperature when a bug is chirping at
3000 chirps per minute is _________°F.
(Round to one decimal place as needed.)
Section 10.2
Question #10
Find the regression equation, letting overhead width be the predictor (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 1.7cm. Can the prediction be correct? What is wrong with predicting the weight in this case? Use a significance level of 0.05.
Overhead Width (cm)
7.4
7.3
9.3
7.7
8.8
8.4
Weight (kg)
135
161
238
146
212
203
View the critical values of the Pearson correlation coefficient r.
Critical values of the pearson correlation coefficient r
n
α=0.05
α=0.01
NOTE: To test H0: ρ=0 against H1: ρ≠0, reject H0 if the absolute value of r is greater than the critical value in the table.
4
0.950
0.990
5
0.878
0.959
6
0.811
0.917
7
0.754
0.875
8
0.707
0.834
9
0.666
0.798
10
0.632
0.765
11
0.602
0.735
12
0.576
0.708
13
0.553
0.684
14
0.532…
Chapter 10 Solutions
Elementary Statistics
Ch. 10.2 - Notation For each of several randomly selected...Ch. 10.2 - Physics Experiment A physics experiment consists...Ch. 10.2 - Cause of High Blood Pressure Some studies have...Ch. 10.2 - Notation What is the difference between the...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Cereal Killers The amounts of sugar (grams of...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...
Ch. 10.2 - Outlier Refer in the accompanying...Ch. 10.2 - Clusters Refer to the following Minitab-generated...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 14BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 19BSCCh. 10.2 - Prob. 20BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 23BSCCh. 10.2 - Prob. 24BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 26BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Appendix B Data Sets. In Exercises 29-34, use the...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Transformed Data In addition to testing for a...Ch. 10.2 - Prob. 34BBCh. 10.3 - Notation and Terminology If we use the paired...Ch. 10.3 - Best-Fit Line In what sense is the regression line...Ch. 10.3 - Prob. 3BSCCh. 10.3 - Notation What is the difference between the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Effects of an Outlier Refer to the Mini...Ch. 10.3 - Effects of Clusters Refer to the Minitab-generated...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Prob. 31BSCCh. 10.3 - Large Data Sets. Exercises 29-32 use the same...Ch. 10.3 - Prob. 33BBCh. 10.3 - Prob. 34BBCh. 10.4 - Prob. 1BSCCh. 10.4 - Prediction Interval Using the heights and weights...Ch. 10.4 - Prob. 3BSCCh. 10.4 - Prob. 4BSCCh. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Prob. 9BSCCh. 10.4 - Prob. 10BSCCh. 10.4 - Prob. 11BSCCh. 10.4 - Prob. 12BSCCh. 10.4 - Prob. 13BSCCh. 10.4 - Prob. 14BSCCh. 10.4 - Prob. 15BSCCh. 10.4 - Prob. 16BSCCh. 10.4 - Variation and Prediction Intervals. In Exercises...Ch. 10.4 - Prob. 18BSCCh. 10.4 - Prob. 19BSCCh. 10.4 - Prob. 20BSCCh. 10.4 - Confidence Intervals for 0 and 1 Confidence...Ch. 10.4 - Confidence Interval for Mean Predicted Value...Ch. 10.5 - Prob. 1BSCCh. 10.5 - Best Multiple Regression Equation For the...Ch. 10.5 - Adjusted Coefficient of Determination For Exercise...Ch. 10.5 - Interpreting R2 For the multiple regression...Ch. 10.5 - Prob. 5BSCCh. 10.5 - Prob. 6BSCCh. 10.5 - Prob. 7BSCCh. 10.5 - Prob. 8BSCCh. 10.5 - Prob. 9BSCCh. 10.5 - Prob. 10BSCCh. 10.5 - Prob. 11BSCCh. 10.5 - City Fuel Consumption: Finding the Best Multiple...Ch. 10.5 - Prob. 13BSCCh. 10.5 - Prob. 14BSCCh. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Prob. 17BBCh. 10.5 - Prob. 18BBCh. 10.5 - Dummy Variable Refer to Data Set 9 Bear...Ch. 10.6 - Prob. 1BSCCh. 10.6 - Prob. 2BSCCh. 10.6 - Super Bowl and R2 Let x represent years coded as...Ch. 10.6 - Prob. 4BSCCh. 10.6 - Prob. 5BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 7BSCCh. 10.6 - Prob. 8BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 11BSCCh. 10.6 - Prob. 12BSCCh. 10.6 - Prob. 13BSCCh. 10.6 - Prob. 14BSCCh. 10.6 - Prob. 15BSCCh. 10.6 - Prob. 16BSCCh. 10.6 - Prob. 18BBCh. 10 - The exercises arc based on the following sample...Ch. 10 - Prob. 2CQQCh. 10 - Prob. 3CQQCh. 10 - The exercises are based on the following sample...Ch. 10 - The exercises are based on the following sample...Ch. 10 - Prob. 6CQQCh. 10 - Prob. 7CQQCh. 10 - Prob. 8CQQCh. 10 - Prob. 9CQQCh. 10 - Prob. 10CQQCh. 10 - Old Faithful The table below lists measurements...Ch. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 1CRECh. 10 - Prob. 2CRECh. 10 - Prob. 3CRECh. 10 - Prob. 4CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 6CRECh. 10 - Prob. 7CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 9CRECh. 10 - Prob. 10CRECh. 10 - Critical Thinking: Is replication validation? The...Ch. 10 - Prob. 2FDDCh. 10 - Prob. 3FDD
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardFind the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardWhat does the y -intercept on the graph of a logistic equation correspond to for a population modeled by that equation?arrow_forward
- If your graphing calculator is capable of computing a least-squares sinusoidal regression model, use it to find a second model for the data. Graph this new equation along with your first model. How do they compare?arrow_forwardKidsFeet Regression Line y-Intercept The KidsFeet dataframe contains data collected on 39 fourth grade students in Ann Arbor, MI, in October 1997. Two of the measurements taken on the children were the length in centimeters, (length), and width in centimeters, (width), of their longest foot. This data could be used to answer the following Research Question: How is the width of a fourth-grade student's foot related to the length? Which of the following is the y-intercept of the regression line? ## ## Simple Linear Regression## ## Correlation coefficient r = 0.6411 ## ## Equation of Regression Line:## ## length = 9.817 + 1.658 * width ## ## Residual Standard Error: s = 1.025 ## R^2 (unadjusted): R^2 = 0.411 ( ) 1.0248 ( ) 1.6576 ( ) 22.8153 ( ) 0.411 ( ) 9.8172 ( )0.6411arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY