Elementary Statistics
12th Edition
ISBN: 9780321836960
Author: Mario F. Triola
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 5RE
To determine
To find: The regression equation with the durations of eruptions (x1) and interval-beforetime of eruptions (x2) as the predictor variables and the interval-after time of eruptions (y) as dependent variable.
To identify: The value of the multiple coefficient of determination
To find: The adjusted value of
To obtain: The P-value corresponding to the overall significance of the multiple regression equation.
To determine: Whether the regression equation can be used topredict the interval-after time with durations and interval-before time of eruptionsor not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is dependent and independent variables? Fully write out the regression equation.What is the sample size used in this investigation? Fill in the blanks identified by ‘*’ and ‘**’. Is β significant, at the 5% level of significance?
Let price denote a price index for the goods sold by a restaurant, advert the amount spent on advertising, sales the sales for the restaurant, and consider the following
two regressions
First regression: sales = B1 + B2price + B3price? + B4advert + ßsadvert? + e,
Second regression: sales = B1 + B2price + B3price? + e
We estimate both regressions using a sample of 105 observations. The sum of square residuals (E ê) from the first regression equals 50, while the sum of square
Li=1
residuals from the second regression equals 70. Suppose we are interested in testing the null hypothesis that expected sales do not depend on advertising. What is the F-
statistic for this null hypothesis? Recall the F-statistic is given by ((SSER - SSEU)/J)/(SSEy/(n – K)).
O a. -15
O b. 42
Oc.
21
O d. 20
O e. All other options are incorrect.
The data show the chest size and weight of several bears. Find the regression equation, letting chest size be the independent (x) variable. Then find the best predicted weight of a bear with a chest size of 63 inches. Is the result close to the actual weight of 562 pounds? Use a significance level of 0.05.
Chest_size_(inches) Weight_ (pounds)58 41450 31265 49959 45059 45648 260
What is the regression equation?^y = ____ + _____ x (round to one decimal place as needed.)What Is the best predicted weight of a bear with a chest size of 63 inches? ^y =____ pounds (round one decimal as needed)Is the result close to the actual weight of 452 pounds?(a) This result is very close to the actual weight of the bear.(b) This result is close to the actual weight of the bear.(c) This result is exactly…
Chapter 10 Solutions
Elementary Statistics
Ch. 10.2 - Notation For each of several randomly selected...Ch. 10.2 - Physics Experiment A physics experiment consists...Ch. 10.2 - Cause of High Blood Pressure Some studies have...Ch. 10.2 - Notation What is the difference between the...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Interpreting r. In Exercises 5-8, use a...Ch. 10.2 - Cereal Killers The amounts of sugar (grams of...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...Ch. 10.2 - Explore! Exercises 9 and 10 provide two data sets...
Ch. 10.2 - Outlier Refer in the accompanying...Ch. 10.2 - Clusters Refer to the following Minitab-generated...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 14BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 19BSCCh. 10.2 - Prob. 20BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 23BSCCh. 10.2 - Prob. 24BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Prob. 26BSCCh. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Testing for a Linear Correlation. In Exercises...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Appendix B Data Sets. In Exercises 29-34, use the...Ch. 10.2 - Large Data Sets. In Exercises 29-32, use the data...Ch. 10.2 - Transformed Data In addition to testing for a...Ch. 10.2 - Prob. 34BBCh. 10.3 - Notation and Terminology If we use the paired...Ch. 10.3 - Best-Fit Line In what sense is the regression line...Ch. 10.3 - Prob. 3BSCCh. 10.3 - Notation What is the difference between the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Making Predictions. In Exercises 5-8, let the...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Finding the Equation of the Regression Line. In...Ch. 10.3 - Effects of an Outlier Refer to the Mini...Ch. 10.3 - Effects of Clusters Refer to the Minitab-generated...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 13-28 use...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Regression and Predictions. Exercises 1328 use the...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Large Data Sets. Exercises 2932 use the same...Ch. 10.3 - Prob. 31BSCCh. 10.3 - Large Data Sets. Exercises 29-32 use the same...Ch. 10.3 - Prob. 33BBCh. 10.3 - Prob. 34BBCh. 10.4 - Prob. 1BSCCh. 10.4 - Prediction Interval Using the heights and weights...Ch. 10.4 - Prob. 3BSCCh. 10.4 - Prob. 4BSCCh. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Interpreting the Coefficient of Determination. In...Ch. 10.4 - Prob. 9BSCCh. 10.4 - Prob. 10BSCCh. 10.4 - Prob. 11BSCCh. 10.4 - Prob. 12BSCCh. 10.4 - Prob. 13BSCCh. 10.4 - Prob. 14BSCCh. 10.4 - Prob. 15BSCCh. 10.4 - Prob. 16BSCCh. 10.4 - Variation and Prediction Intervals. In Exercises...Ch. 10.4 - Prob. 18BSCCh. 10.4 - Prob. 19BSCCh. 10.4 - Prob. 20BSCCh. 10.4 - Confidence Intervals for 0 and 1 Confidence...Ch. 10.4 - Confidence Interval for Mean Predicted Value...Ch. 10.5 - Prob. 1BSCCh. 10.5 - Best Multiple Regression Equation For the...Ch. 10.5 - Adjusted Coefficient of Determination For Exercise...Ch. 10.5 - Interpreting R2 For the multiple regression...Ch. 10.5 - Prob. 5BSCCh. 10.5 - Prob. 6BSCCh. 10.5 - Prob. 7BSCCh. 10.5 - Prob. 8BSCCh. 10.5 - Prob. 9BSCCh. 10.5 - Prob. 10BSCCh. 10.5 - Prob. 11BSCCh. 10.5 - City Fuel Consumption: Finding the Best Multiple...Ch. 10.5 - Prob. 13BSCCh. 10.5 - Prob. 14BSCCh. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Appendix B Data Sets. In Exercises 13-16, refer to...Ch. 10.5 - Prob. 17BBCh. 10.5 - Prob. 18BBCh. 10.5 - Dummy Variable Refer to Data Set 9 Bear...Ch. 10.6 - Prob. 1BSCCh. 10.6 - Prob. 2BSCCh. 10.6 - Super Bowl and R2 Let x represent years coded as...Ch. 10.6 - Prob. 4BSCCh. 10.6 - Prob. 5BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 7BSCCh. 10.6 - Prob. 8BSCCh. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Finding the Best Model. In Exercises 5-16,...Ch. 10.6 - Prob. 11BSCCh. 10.6 - Prob. 12BSCCh. 10.6 - Prob. 13BSCCh. 10.6 - Prob. 14BSCCh. 10.6 - Prob. 15BSCCh. 10.6 - Prob. 16BSCCh. 10.6 - Prob. 18BBCh. 10 - The exercises arc based on the following sample...Ch. 10 - Prob. 2CQQCh. 10 - Prob. 3CQQCh. 10 - The exercises are based on the following sample...Ch. 10 - The exercises are based on the following sample...Ch. 10 - Prob. 6CQQCh. 10 - Prob. 7CQQCh. 10 - Prob. 8CQQCh. 10 - Prob. 9CQQCh. 10 - Prob. 10CQQCh. 10 - Old Faithful The table below lists measurements...Ch. 10 - Prob. 2RECh. 10 - Prob. 3RECh. 10 - Prob. 4RECh. 10 - Prob. 5RECh. 10 - Prob. 1CRECh. 10 - Prob. 2CRECh. 10 - Prob. 3CRECh. 10 - Prob. 4CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 6CRECh. 10 - Prob. 7CRECh. 10 - Effectiveness of Diet. Listed below are weights...Ch. 10 - Prob. 9CRECh. 10 - Prob. 10CRECh. 10 - Critical Thinking: Is replication validation? The...Ch. 10 - Prob. 2FDDCh. 10 - Prob. 3FDD
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- For the following exercises, use Table 4 which shows the percent of unemployed persons 25 years or older who are college graduates in a particular city, by year. Based on the set of data given in Table 5, calculate the regression line using a calculator or other technology tool, and determine the correlation coefficient. Round to three decimal places of accuracyarrow_forwardThe data show the chest size and weight of several bears. Find the regression equation, letting chest size be the independent (x) variable. Then find the best predicted weight of a bear with a chest size of 50 inches. Is the result close to the actual weight of 427 pounds? Use a significance level of 0.05. Chest_size_(inches) Weight_ (pounds)49 36851 38253 42061 48157 45745 287 What is the regression equation? y=___+___x (Round to one decimal place as needed.) What is the best predicted weight of a bear with a chest size of 50 inches? The best predicted weight for a bear with a chest size of 50 inches is __ pounds. (Round to one decimal place as needed.) Is the result close to the actual weight of 427 pounds?arrow_forwardGive the data: Y. 12,14, 15, 17,18, 15,16 X1. 8,8,6,5,3, 4,7 X2. 0,1,1,2, 3,3,4 Obtain the least square estimates of the parameters in the multiple regression model and test the over all significance using Anova.arrow_forward
- In the simple linear regression Y = 20 - 5X, if the coefficient of determination is 0.8, then the sample correlation coefficient is Select one: O a. 0.89 Ob. 0.64 OC. -0.89 Od. -0.64 Next pagearrow_forwardFive pairs of data are used in determining a regression line ŷ = -3 + 4x. If the five values of the explanatory variable are 28, 45, 16, 41, and 20, respectively, what is the mean of the five values of the response variable?arrow_forwardWhich of the variables is the indepenent variable and dependent variable for the following question. fit a simple linear regression model to predict latitudes using average monthly range lat= latitudes range= the average monthly range between mean montly maximum and minimum temperatures for a selected set of US cities.arrow_forward
- The data show the chest size and weight of several bears. Find the regression equation, letting chest size be the independent (x) variable. Then find the best predicted weight of a bear with a chest size of 43 inches. Is the result close to the actual weight of 237 pounds? Use a significance level of 0.05. Chest_size_(inches) Weight_ (pounds)50 27954 33944 21954 29240 20136 116 Is the result close to the actual weight of 237 pounds? A. This result is close to the actual weight of the bear. B. This result is very close to the actual weight of the bear. C. This result is not very close to the actual weight of the bear. D. This result is exactly the same as the actual weight of the bear.arrow_forwardThe accompanying table shows results from regressions performed on data from a random sample of 21 cars. The response (y) variable is CITY (fuel consumption in mi/gal). The predictor (x) variables are WT (weight in pounds), DISP (engine displacement in liters), and HWY (highway fuel consumption in mi/gal). Which regression equation is best for predicting city fuel consumption? Why? E Click the icon to view the table of regression equations. Choose the correct answer below. O A. The equation CITY = 6.65 - 0.00161WT + 0.675HWY is best because it has a low P-value and the highest adjusted value of R2. O B. The equation CITY = 6.83 - 0.00132WT - 0.253DISP + 0.654HWY is best because it has a low P-value and the highest value of R?. OC. The equation CITY = 6.83 - 0.00132WT - 0.253DISP + 0.654HWY is best because it uses all of the available predictor variables. O D. The equation CITY = - 3.14 + 0.823HWY is best because it has a low P-value and its R2 and adjusted R? values are comparable to…arrow_forwardWhat is the relationship between diamond price and carat size? 307 diamonds were sampled and a straight-line relationship was hypothesized between y = diamond price (in dollars) and x = size of the diamond (in carats). The simple linear regression for the analysis is shown below: Least Squares Linear Regression of PRICE Interpret the standard deviation of the regression model. a) We expect most of the sampled diamond prices to fall within $1117.56 of their least squares predicted values. b) We can explain 89.25% of the variation in the sampled diamond prices around their mean using the size of the diamond in a linear model. c) For every 1-carat increase in the size of a diamond, we estimate that the price of the diamond will increase by $1117.56. d) We expect most of the sampled diamond prices to fall within $2235.12 of their least squares predicted values.arrow_forward
- The data show the chest size and weight of several bears. Find the regression equation, letting chest size be the independent (x) variable. Then find the best predicted weight of a bear with a chest size of 43 inches. Is the result close to the actual weight of 237 pounds? Use a significance level of 0.05. Chest_size_(inches) Weight_ (pounds)50 27954 33944 21954 29240 20136 116 What is the regression equation? y=___ + ___ x (Round to one decimal place as needed.) What is the best predicted weight of a bear with a chest size of 43 inches? The best predicted weight for a bear with a chest size of 43 inches is __ pounds. (Round to one decimal place as needed.) Is the result close to the actual weight of 237 pounds?arrow_forwardIn a recent college statistics class, data was collected on each student's height and their shoe size. The first three tables of the regression output are below the conclusions. Please agree or disagree with the conclusions and, of course, state your statistical reasoning 1. There is sufficient evidence to believe that a statistically significant relationship exists between a student's height and his/her shoe size. 2. About 80% of the variation in shoe size is determined by the variation in height 3. For each change in height of 0.3598 inches, the student’s shoe size changes by 1.arrow_forwardZagat restaurant guides publish ratings of restaurants for many large cities around the world. The restaurants are rated on a 0 to 30 point scale based on quality of food, decor, service, and cost. Suppose the regression equation that predicts the cost of dinner using the rating of the quality of food for the restaurants in a particular city is (cost of dinner) = 3.64*(food quality) + 2.77. If a restaurant in the city was given a Zagat rating of 27 and the average cost of dinner there is $74.35, what is the residual? Question 4 options: 1) 26.7 2) -74.05 3) -26.7 4) -47.35 5) 47.35arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY