Practical Management Science, Loose-leaf Version
5th Edition
ISBN: 9781305631540
Author: WINSTON, Wayne L.; Albright, S. Christian
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10.4, Problem 12P
In August of the current year, a car dealer is trying to determine how many cars of the next model year to order. Each car ordered in August costs $20,000. The demand for the dealer’s next year models has the probability distribution shown in the file P10_12.xlsx. Each car sells for $25,000. If demand for next year’s cars exceeds the number of cars ordered in August, the dealer must reorder at a cost of $22,000 per car. Excess cars can be disposed of at $17,000 per car. Use simulation to determine how many cars to order in August. For your optimal order quantity, find a 95% confidence interval for the expected profit.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A borrower takes out a 30-year adjustable rate mortgage loan for $200,000 with monthly payments. The first two years of the loan have a "teaser" rate of 4 percent, after that the rate can reset with a 5 percent annual payment cap. On the reset date, the composite rate is 6 percent. Assume that the loan allows for negative amortization. What would be the outstanding balance on the loan at the end of Year 3?
Multiple Choice
$192,926
$190,074
$192,812
$192,337
A new edition of a very popular textbook will be published a year from now. The
publisher currently has 1000 copies on hand and is deciding whether to do another
printing before the new edition comes out. The publisher estimates that demand for
the book during the next year is governed by the probability distribution in the
excel template file. A production run incurs a fixed cost of $15,000 plus a variable
cost of $20 per book printed. Books are sold for $190 per book. Any demand that
cannot be met incurs a penalty cost of $30 per book, due to loss of goodwill. Up to
1000 of any leftover books can be sold to Barnes and Noble for $45 per book. The
publisher is interested in maximizing expected profit. The following print-run sizes
are under consideration: 0 (no production run) to 16,000 in increments of 2000.
What decision would you recommend? Use simulation with 1000 replications.
The purchasing agent for a PC manufacturer is currently negotiating a purchase agreement for a particular electronic component with a given supplier. This component is produced in lots of 1,000, and the cost of purchasing a lot is $30,000. Unfortunately, past experience indicates that this supplier has occasionally shipped defective components to its customers. Specifically, the proportion of defective components supplied by this supplier has the probability distribution given in the file P09_55.xlsx. Although the PC manufacturer can repair a defective component at a cost of $20 each, the purchasing agent learns that this supplier will now assume the cost of replacing defective components in excess of the first 100 faulty items found in a given lot. This guarantee may be purchased by the PC manufacturer prior to the receipt of a given lot at a cost of $1,000 per lot. The purchasing agent wants to determine whether it is worthwhile to purchase the supplier's guarantee policy.
a.…
Chapter 10 Solutions
Practical Management Science, Loose-leaf Version
Ch. 10.2 - Use the RAND function and the Copy command to...Ch. 10.2 - Use Excels functions (not @RISK) to generate 1000...Ch. 10.2 - Use @RISK to draw a uniform distribution from 400...Ch. 10.2 - Use @RISK to draw a normal distribution with mean...Ch. 10.2 - Use @RISK to draw a triangular distribution with...Ch. 10.2 - Use @RISK to draw a binomial distribution that...Ch. 10.2 - Use @RISK to draw a triangular distribution with...Ch. 10.2 - We all hate to keep track of small change. By...Ch. 10.4 - Prob. 11PCh. 10.4 - In August of the current year, a car dealer is...
Ch. 10.4 - Prob. 13PCh. 10.4 - Prob. 14PCh. 10.4 - Prob. 15PCh. 10.5 - If you add several normally distributed random...Ch. 10.5 - In Problem 11 from the previous section, we stated...Ch. 10.5 - Continuing the previous problem, assume, as in...Ch. 10.5 - In Problem 12 of the previous section, suppose...Ch. 10.5 - Use @RISK to analyze the sweatshirt situation in...Ch. 10.5 - Although the normal distribution is a reasonable...Ch. 10.6 - When you use @RISKs correlation feature to...Ch. 10.6 - Prob. 24PCh. 10.6 - Prob. 25PCh. 10.6 - Prob. 28PCh. 10 - Six months before its annual convention, the...Ch. 10 - Prob. 30PCh. 10 - A new edition of a very popular textbook will be...Ch. 10 - Prob. 32PCh. 10 - W. L. Brown, a direct marketer of womens clothing,...Ch. 10 - Prob. 34PCh. 10 - Lemingtons is trying to determine how many Jean...Ch. 10 - Dilberts Department Store is trying to determine...Ch. 10 - It is surprising (but true) that if 23 people are...Ch. 10 - Prob. 40PCh. 10 - At the beginning of each week, a machine is in one...Ch. 10 - Simulation can be used to illustrate a number of...Ch. 10 - Prob. 43PCh. 10 - Prob. 46PCh. 10 - If you want to replicate the results of a...Ch. 10 - Suppose you simulate a gambling situation where...Ch. 10 - Prob. 49PCh. 10 - Big Hit Video must determine how many copies of a...Ch. 10 - Prob. 51PCh. 10 - Prob. 52PCh. 10 - Why is the RISKCORRMAT function necessary? How...Ch. 10 - Consider the claim that normally distributed...Ch. 10 - Prob. 55PCh. 10 - When you use a RISKSIMTABLE function for a...Ch. 10 - Consider a situation where there is a cost that is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Amanda has 30 years to save for her retirement. At the beginning of each year, she puts 5000 into her retirement account. At any point in time, all of Amandas retirement funds are tied up in the stock market. Suppose the annual return on stocks follows a normal distribution with mean 12% and standard deviation 25%. What is the probability that at the end of 30 years, Amanda will have reached her goal of having 1,000,000 for retirement? Assume that if Amanda reaches her goal before 30 years, she will stop investing. (Hint: Each year you should keep track of Amandas beginning cash positionfor year 1, this is 5000and Amandas ending cash position. Of course, Amandas ending cash position for a given year is a function of her beginning cash position and the return on stocks for that year. To estimate the probability that Amanda meets her goal, use an IF statement that returns 1 if she meets her goal and 0 otherwise.)arrow_forwardIf you own a stock, buying a put option on the stock will greatly reduce your risk. This is the idea behind portfolio insurance. To illustrate, consider a stock that currently sells for 56 and has an annual volatility of 30%. Assume the risk-free rate is 8%, and you estimate that the stocks annual growth rate is 12%. a. Suppose you own 100 shares of this stock. Use simulation to estimate the probability distribution of the percentage return earned on this stock during a one-year period. b. Now suppose you also buy a put option (for 238) on the stock. The option has an exercise price of 50 and an exercise date one year from now. Use simulation to estimate the probability distribution of the percentage return on your portfolio over a one-year period. Can you see why this strategy is called a portfolio insurance strategy? c. Use simulation to show that the put option should, indeed, sell for about 238.arrow_forwardA martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forward
- You now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forwardSix months before its annual convention, the American Medical Association must determine how many rooms to reserve. At this time, the AMA can reserve rooms at a cost of 150 per room. The AMA believes the number of doctors attending the convention will be normally distributed with a mean of 5000 and a standard deviation of 1000. If the number of people attending the convention exceeds the number of rooms reserved, extra rooms must be reserved at a cost of 250 per room. a. Use simulation with @RISK to determine the number of rooms that should be reserved to minimize the expected cost to the AMA. Try possible values from 4100 to 4900 in increments of 100. b. Redo part a for the case where the number attending has a triangular distribution with minimum value 2000, maximum value 7000, and most likely value 5000. Does this change the substantive results from part a?arrow_forwardA common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.arrow_forward
- Based on Marcus (1990). The Balboa mutual fund has beaten the Standard and Poors 500 during 11 of the last 13 years. People use this as an argument that you can beat the market. Here is another way to look at it that shows that Balboas beating the market 11 out of 13 times is not unusual. Consider 50 mutual funds, each of which has a 50% chance of beating the market during a given year. Use simulation to estimate the probability that over a 13-year period the best of the 50 mutual funds will beat the market for at least 11 out of 13 years. This probability turns out to exceed 40%, which means that the best mutual fund beating the market 11 out of 13 years is not an unusual occurrence after all.arrow_forwardBased on Kelly (1956). You currently have 100. Each week you can invest any amount of money you currently have in a risky investment. With probability 0.4, the amount you invest is tripled (e.g., if you invest 100, you increase your asset position by 300), and, with probability 0.6, the amount you invest is lost. Consider the following investment strategies: Each week, invest 10% of your money. Each week, invest 30% of your money. Each week, invest 50% of your money. Use @RISK to simulate 100 weeks of each strategy 1000 times. Which strategy appears to be best in terms of the maximum growth rate? (In general, if you can multiply your investment by M with probability p and lose your investment with probability q = 1 p, you should invest a fraction [p(M 1) q]/(M 1) of your money each week. This strategy maximizes the expected growth rate of your fortune and is known as the Kelly criterion.) (Hint: If an initial wealth of I dollars grows to F dollars in 100 weeks, the weekly growth rate, labeled r, satisfies F = (I + r)100, so that r = (F/I)1/100 1.)arrow_forwardIt is January 1 of year 0, and Merck is trying to determine whether to continue development of a new drug. The following information is relevant. You can assume that all cash flows occur at the ends of the respective years. Clinical trials (the trials where the drug is tested on humans) are equally likely to be completed in year 1 or 2. There is an 80% chance that clinical trials will succeed. If these trials fail, the FDA will not allow the drug to be marketed. The cost of clinical trials is assumed to follow a triangular distribution with best case 100 million, most likely case 150 million, and worst case 250 million. Clinical trial costs are incurred at the end of the year clinical trials are completed. If clinical trials succeed, the drug will be sold for five years, earning a profit of 6 per unit sold. If clinical trials succeed, a plant will be built during the same year trials are completed. The cost of the plant is assumed to follow a triangular distribution with best case 1 billion, most likely case 1.5 billion, and worst case 2.5 billion. The plant cost will be depreciated on a straight-line basis during the five years of sales. Sales begin the year after successful clinical trials. Of course, if the clinical trials fail, there are no sales. During the first year of sales, Merck believe sales will be between 100 million and 200 million units. Sales of 140 million units are assumed to be three times as likely as sales of 120 million units, and sales of 160 million units are assumed to be twice as likely as sales of 120 million units. Merck assumes that for years 2 to 5 that the drug is on the market, the growth rate will be the same each year. The annual growth in sales will be between 5% and 15%. There is a 25% chance that the annual growth will be 7% or less, a 50% chance that it will be 9% or less, and a 75% chance that it will be 12% or less. Cash flows are discounted 15% per year, and the tax rate is 40%. Use simulation to model Mercks situation. Based on the simulation output, would you recommend that Merck continue developing? Explain your reasoning. What are the three key drivers of the projects NPV? (Hint: The way the uncertainty about the first year sales is stated suggests using the General distribution, implemented with the RISKGENERAL function. Similarly, the way the uncertainty about the annual growth rate is stated suggests using the Cumul distribution, implemented with the RISKCUMUL function. Look these functions up in @RISKs online help.)arrow_forward
- A new edition of a very popular textbook will be published a year from now. The publisher currently has 1000 copies on hand and is deciding whether to do another printing before the new edition comes out. The publisher estimates that demand for the book during the next year is governed by the probability distribution in the file P10_31.xlsx. A production run incurs a fixed cost of 15,000 plus a variable cost of 20 per book printed. Books are sold for 190 per book. Any demand that cannot be met incurs a penalty cost of 30 per book, due to loss of goodwill. Up to 1000 of any leftover books can be sold to Barnes and Noble for 45 per book. The publisher is interested in maximizing expected profit. The following print-run sizes are under consideration: 0 (no production run) to 16,000 in increments of 2000. What decision would you recommend? Use simulation with 1000 replications. For your optimal decision, the publisher can be 90% certain that the actual profit associated with remaining sales of the current edition will be between what two values?arrow_forwardYou are considering a 10-year investment project. At present, the expected cash flow each year is 10,000. Suppose, however, that each years cash flow is normally distributed with mean equal to last years actual cash flow and standard deviation 1000. For example, suppose that the actual cash flow in year 1 is 12,000. Then year 2 cash flow is normal with mean 12,000 and standard deviation 1000. Also, at the end of year 1, your best guess is that each later years expected cash flow will be 12,000. a. Estimate the mean and standard deviation of the NPV of this project. Assume that cash flows are discounted at a rate of 10% per year. b. Now assume that the project has an abandonment option. At the end of each year you can abandon the project for the value given in the file P11_60.xlsx. For example, suppose that year 1 cash flow is 4000. Then at the end of year 1, you expect cash flow for each remaining year to be 4000. This has an NPV of less than 62,000, so you should abandon the project and collect 62,000 at the end of year 1. Estimate the mean and standard deviation of the project with the abandonment option. How much would you pay for the abandonment option? (Hint: You can abandon a project at most once. So in year 5, for example, you abandon only if the sum of future expected NPVs is less than the year 5 abandonment value and the project has not yet been abandoned. Also, once you abandon the project, the actual cash flows for future years are zero. So in this case the future cash flows after abandonment should be zero in your model.)arrow_forwardW. L. Brown, a direct marketer of womens clothing, must determine how many telephone operators to schedule during each part of the day. W. L. Brown estimates that the number of phone calls received each hour of a typical eight-hour shift can be described by the probability distribution in the file P10_33.xlsx. Each operator can handle 15 calls per hour and costs the company 20 per hour. Each phone call that is not handled is assumed to cost the company 6 in lost profit. Considering the options of employing 6, 8, 10, 12, 14, or 16 operators, use simulation to determine the number of operators that minimizes the expected hourly cost (labor costs plus lost profits).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License