EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 99P
To determine
The comparison for shape factor.
The reason for calling
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
describe thickness of the boundary layer in laminarand turbulent flows, Boundary layer separation and methods to avoid theseparation of the boundary layer, and Magnus effect etc
Water (T= 10 C, , k=0.644 W/m.C, u = 5.54× 10^-7 m2/s, Pr=3.55), flow over plate 1m x 1m , with velocity 2
m/s. the plate surfące temperature is 90 C. Give the answer for the following
|-the flow tyPe 2-total het transfer
3-theavargeheat transfer cafficient
4- Nu ?
An approximation for the boundary-layer shape in
is the formula
u(y) - U sin
0 sys d
where U is the stream velocity far from the wall and d is the
boundary layer thickness, as in Fig.
If the fluid is
helium at 20°C and 1 atm, and if U = 10.8 m/s and 8= 3 cm,
use the formula to (a) estimate the wall shear stress Tw in
Pa, and (b) find the position in the boundary layer where t
is one-half of Tw.
-- y = 6
u(y)
Chapter 10 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider an airflow over the surface of a flat plate with a temperature Ts = 250 °C. At some distance from y the origin, the temperature profile of the airflow is given by the following function: q/A As, Ts T(y) = T, -(T. -T3)exp -u. y a fluido dAs The airflow at atmospheric pressure has a free flow velocity u.. = 0.06 m/s and a temperature T = 15°C. The thermal diffusivity of the fluid is aluid = 3.872E-05 m?/s and its thermal conductivity Afluid = 0.03383 W/(m K). 1. Determine the heat flux over the surface of the plate. q/A = W/m? 2. Determine the convection coefficient of the airflow. h = W/(m² K)arrow_forward(a) What is boundary layer flow and what are the key assumptions used in simple analytical solutions. What are the outputs from simple solutions and to what practical configurations do they apply most closely and why.arrow_forwardNeed help with this engineering problem. On my online homework, it says the answer 10.5 m/s is incorrect.arrow_forward
- QI/ If the velocity profile of the boundary layer is :O find the thickness of boundary layer, the shear stress at trailing edge and the drag force on one side of plate 2 m long, if it is immersed in water flowing with velocity of 0.4 m/s (p 998 D = 1.007*10-6 m2/s %3Darrow_forwardAir at Tair= 39 °C having velocity of 10 m/s is forced to flow over a long hexagonal cross sectioned body which has uniform constant surface temperature of Ts=146 °C as shown in the below figure. What is the forced convection heat flux (in W/m2) from the body? (For air use, k= 0.013 W/m.K, Pr= 0.75, kinematic viscosity= 2 x 10- 5 m²/s) Air T₁₂ V= 10 m/s air D= 15 cmarrow_forwardplease answer quicklyarrow_forward
- From Table the drag coefficient of a wide plate normalto a stream is approximately 2.0. Let the stream conditionsbe U∞ and p∞. If the average pressure on the front of theplate is approximately equal to the free-stream stagnationpressure, what is the average pressure on the rear?arrow_forwardThe answer is handwritten and step by steparrow_forwardThe turbulent boundary layer can be considered to consist of four regions. Which choice is not one of them? (a) Buffer layer (b) Overlap layer (c) Transition layer (d ) Viscous layer (e) Turbulent layerarrow_forward
- Air flow at a constant speed (Ug = 10 m/s) is forming a two-dimensional incompressible laminar boundary layer along a flat plate The velocity profile inside the boundary layer is given by: -2²-² a) Determine the shear stress at the wall, at y = 3 mm and y = 10 mm. b) Calculate the boundary layer displacement thickness. c) Calculate the mass flow rate through the boundary layer per unit width.arrow_forwardA 20 °C water flows to 50cmx60cm flat plate with velocity of 6m/s . The flat plate surface temperature is maintained at 40 °C The water flows parallel to the 50cm side of the plate. If the kinematic viscosity of water is 78x10-8 m2/s, What is the local heat flux (Q/A) at the end of the plate (k=0.86 W/m deg C, Re=3840000, and Pr=0.7)?arrow_forwardMust answer all the questions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License