EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 10, Problem 92P
To determine
The apparent thickness of the plate at downstream.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A flat plate of length equal to 50 cm is parallel to a 25 m/s stream velocity. What is the shear stress, in Pa, at a section
40 cm away from the leading edge of the plate? The fluid is air with density equal to 1.2 kg/m³ and kinematic viscosity
of 1.5 x 10-5 m²/s.
Answer:
An approximation for the boundary-layer shape in
is the formula
u(y) - U sin
0 sys d
where U is the stream velocity far from the wall and d is the
boundary layer thickness, as in Fig.
If the fluid is
helium at 20°C and 1 atm, and if U = 10.8 m/s and 8= 3 cm,
use the formula to (a) estimate the wall shear stress Tw in
Pa, and (b) find the position in the boundary layer where t
is one-half of Tw.
-- y = 6
u(y)
The answer is handwritten and step by step
Chapter 10 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air at 20C flows at 1 m/s between two parallel flat plates spaced 5 cm apart. Estimate the distance from the entrance to the point at which the hydrodynamic boundary layers meet.arrow_forward5.6 A fluid flows at 5 over a wide, flat plate 15 cm long. For each from the following list, calculate the Reynolds number at the downstream end of the plate. Indicate whether the flow at that point is laminar, transition, or turbulent. Assume all fluids are at 40°C. (a) air, (b) , (c) water, (d) engine oil.arrow_forwardI want the detailed solution to understand a questionarrow_forward
- 2.0 m 7: 10.0 m = 2²-²² Us B 10.0 m Figure Q1-2 Question 2 Air flow at a constant speed (Us = 10 m/s) is forming a two-dimensional incompressible laminar boundary layer along a flat plate The velocity profile inside the boundary layer is given by: 2.0 m (Equation 1) At x = 1.00 m, the boundary layer thickness is given as 6.6094 mm. At this location: a) Determine the shear stress at the wall, at y = 3 mm and y = 10 mm. b) Calculate the boundary layer displacement thickness. c) Calculate the mass flow rate through the boundary layer per unit width. d) Calculate the mass flow rate per unit width of an ideal flow going through the same height as the boundary layer thickness. e) Through calculation relate the difference between the mass flow rates in parts (c) and (d) to the local boundary layer displacement thickness. In not more than 60 word justify your answer. Use sketch(s) to illustrate your justification. f) Does the assumed velocity profile satisfy the pressure boundary condition? In…arrow_forwardNeed help figuring this outarrow_forwardNeed help with this engineering problem. On my online homework, it says the answer 10.5 m/s is incorrect.arrow_forward
- Air flow at a constant speed (Ug = 10 m/s) is forming a two-dimensional incompressible laminar boundary layer along a flat plate The velocity profile inside the boundary layer is given by: -2²-² a) Determine the shear stress at the wall, at y = 3 mm and y = 10 mm. b) Calculate the boundary layer displacement thickness. c) Calculate the mass flow rate through the boundary layer per unit width.arrow_forwardNeed help with this engineering problem.arrow_forwardQI/ If the velocity profile of the boundary layer is :O find the thickness of boundary layer, the shear stress at trailing edge and the drag force on one side of plate 2 m long, if it is immersed in water flowing with velocity of 0.4 m/s (p 998 D = 1.007*10-6 m2/s %3Darrow_forward
- A smooth ceramic sphere (SG= 2.6) is immersed in a flowof water at 20°C and 25 cm/s. What is the sphere diameterif it is encountering (a) creeping motion, Red = 1 or (b)transition to turbulence, Red =250,000?arrow_forwardUsing the four-source image pattern needed to construct theflow near a corner in Fig. fi nd the value of the sourcestrength m that will induce a wall velocity of 4.0 m/s at thepoint (x, y) = (a, 0) just below the source shown, if a = 50 cm.arrow_forwardi need the answer quicklyarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License