EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 20P
To determine
The maximum velocity of honey through the hole to maintain creeping flow.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) The velocity profile of a viscus fluid over a plate is parabolie with vertex 25 em from the
plate ,where the velocity 125 cm/s. calculate the velocity gradient and shear stress at
distance of (0, 5, 15 and 25 cm) from the plate given the viscosity of the fluid =7 poise ?
Also draw the figure explain the relationship between the velocity gradient and shear
stress.
Take velocity profile for parabolic equation, (v = ay + by + c)
At
a point in a
pipe
that lay
flat
ノ
water in the pipe flows
at
a speed of 9.0 mls and has
6-40x 104 Pa
a
gaoge pressure is
Find the gauge pressure
at point 2 of pipe that lower than the first point 8.0 m
and the cvoss - se ctional|
area of the pipe is double of first point .
Answer [1.52x105 Pa]
Simulation of laminar gas flow in the pipe with Ansys Fluent
Task:
1. Calculate velocity distribution in y axis at inlet and outlet of the pipe. Submit it as a chart.
2. Calculate velocity distribution over the pipe length. Submit it as a chart.
Figure. pipe geometry
L, m = 16
R, m= 0.15
Inlet velocity, m/s= 0.08
Gas= Oxygen
Need proper solution like pdf file, don't need steps by steps. If you can can do it through ansys fluent. Write proper solution on word file or pdf.
Chapter 10 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- In a wind tunnel lab, the pitot tube is located at the height of 2 m, the measured static pressure P=1.0 Pa, total pressure P₁-88 Pa, if we assume the flow in the test section follow the profile of exponential function with a-0.22. Please calculated the wind velocity at the height of 1m. p=1.22kg/m³. (continued 1) Measured pressures at points A, B and C as follows: P-25 Pa, P=-55 Pa, P=-43 Pa, please calculate the wind pressure coefficients based on the reference wind velocity pressure at 1 m. A Carrow_forwardLast three onlyarrow_forwardTake the densilty and pressure values at 7km, and then apply Bernoulli equation. I think this is the method to solve the problem,If there any you can proceed with that. Please do it fast ,Very urgent. Question 1: . Consider an airplane flying at a standard altitude of 7 km with a velocity of 300 m/s. At a point on the wing of the airplane, the velocity is 400 m/s. Calculate the pressure at this point.arrow_forward
- Take the density and dynamics viscosity of the water as follows, determine the value of friction factor (f), head loss (h1), pressure drop (dP) and power required to overcome the pressure drop (W) for the cases as shown in the table that follows. Take p= 1000 kg/m³ while u = 1.138 x 103kg/ms. Q2 Cases Pipe Material Water Velocity Pipe Diameter Pipe Length (m/s) (mm) (m) 1 Wrought iron 3.00 35 1000 2 Commercial steel 2.50 10 500arrow_forwardReynold's number of 11090 is obtained for a certain value opening in a shut off valve experimentjexercise 1), when water flows through a pipe of diameter 23 mm. The viscosity of water is 1.14 x10-Nm Find the velocity of flow for this valve opening in m/s=arrow_forwardThe volume flow in a water pipe is 9000 m°/h. The pipe length is 80 m, the pipe diameter 1 m. The material data of water are a density of 1000 kg/m? and kinematic viscosity v=10® m7s. A steel pipe with roughness 0.05 mm is used. Determine the pressure drop in the pipe.arrow_forward
- From the question he has wrote the given infomation. i dont understand how he has got that from the questionarrow_forwardWhat is the dynamic viscosity of the fluid? must include FBD F ... F = 0.45 Ibf m = 151 g v = 0.006 m/s Thk. = 20 cm THISE AN 8mm 6mm, A Steel Plate is pulled up at a constant QU velocity between two layers of liquid 30 cm Ignore Friction at openings @ 20°C @ 20°C 1940arrow_forward4. Water is flowing in a pipe with radius of 25.4 cm at velocity of 5 m/s. The viscosity of water is 1.131 Pa-s and its density is equal to 997.9 What is its Reynolds m³° number and type of fluid flow?arrow_forward
- Compute the b Am? when the lower plate Steady skte momentum Flex Ey> momentum Ilex ty Velscity v in the Figure beloo is 0.804n/s s the pasitive X-directan, the Separation Y s o 304mm, md the fluid viscosity N is o7cP Naly) Longe t Final uelociny distribution in teady Flowarrow_forwardI need the answer as soon as possiblearrow_forwardThe pipe flow in figure is driven by pressurized air in the tank. What gage pressure (P1) is needed to provide a water flow rate (60 m/h) take (v = 1.15*10 m2/sec).If the (P1 =700Kpa) and the fluid specific gravity is (0.68).estimate the viscosity of the fluid if the flow rate is ( 27 m/sec). 30 m Smoxoth pipe: d = 5 cn Open jet 80 m 10 m - 60 m 86arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Properties of Fluids: The Basics; Author: Swanson Flo;https://www.youtube.com/watch?v=TgD3nEO1iCA;License: Standard YouTube License, CC-BY
Fluid Mechanics-Lecture-1_Introduction & Basic Concepts; Author: OOkul - UPSC & SSC Exams;https://www.youtube.com/watch?v=6bZodDnmE0o;License: Standard Youtube License