EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 117P
Which choice is not a scaling parameter used to o nondimensionalize the equations of motion? (a) Characteristic 1igth, L (b) Characteristic speed. V (c) Chxactenstic viscosity,
(d) Characteristic frequency, f (e) Gravitational acceleration, g
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A- Womersley number (a) of a human aorta is 20 and for the rabbit aorta is 17, the blood density is approximately the same across the species. The values of viscosity were 0.0035 Ns/m² for the human and 0.0040 Ns/m² for the rabbit. The diameter of the aorta is 2.0 cm for the man, and 0.7 cm for the rabbit, estimate the heart rate beats per minute (bpm) for both species
Mott ."
cometer, which we can analyze later in Chap. 7. A small
ball of diameter D and density p, falls through a tube of test
liquid (p. µ). The fall velocity V is calculated by the time to
fall a measured distance. The formula for calculating the
viscosity of the fluid is
discusses a simple falling-ball vis-
(Po – p)gD²
18 V
This result is limited by the requirement that the Reynolds
number (pVD/u) be less than 1.0. Suppose a steel ball (SG =
7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88)
at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is
the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num-
ber small enough for a valid estimate?
Taylor number (Ta) is used here to describe the ratio between the inertia effect and
the viscous effect. By applying Buckingham Pi's Theorem, determine an equation for
Ta as a function of the radius of inner cylinder (r), cylinder tangential velocity (v),
fluid dynamic viscosity (u), gap distance (L) and fluid density (p).
Q4
Chapter 10 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I'm looking for a conclusion based on this given result from the Falling sphere viscometer.arrow_forwardWhich choice is not a scaling parameter used to nondimensionalize the equations of motion? (a) Characteristic length, L (b) Characteristic speed, V (c) Characteristic viscosity, ? (d ) Characteristic frequency, f (e) Gravitational acceleration, garrow_forwardI need the answer as soon as possiblearrow_forward
- A Moving to another question will save this response. Quèstion 2 Sl units of dynamic viscogity are: Ns/m? Nm2/s s/m? m2/s A Moving to another question will save this response.arrow_forwardIn the study of turbulent flow, turbulent viscous dissipation rate ? (rate of energy loss per unit mass) is known to be a function of length scale l and velocity scale u′ of the large-scale turbulent eddies. Using dimensional analysis (Buckingham pi and the method of repeating variables) and showing all of your work, generate an expression for ? as a function of l and u′.arrow_forwardThe company has opted to purchase a new viscometer for you, as such, you are required by topropose two options for new viscometers. Select two viscometers and explain their operation andconstraints. (P3)b. (P4) Given that you achieved the following results with a U-Tube viscometer:Temperature/ C Time / s40 5760 4180 29100 16arrow_forward
- Taylor number (Ta) is used here to describe the ratio between the inertia effect andthe viscous effect. By applying Buckingham Pi’s Theorem, determine an equation forTa as a function of the radius of inner cylinder (r), cylinder tangential velocity (v),fluid dynamic viscosity (μ), gap distance (L) and fluid density (ρ).arrow_forwardA 5 m of ship model is towed in the water of kinemetic viscosity 1x10^-6 m^2/s at 3.5 m/s. The wetted hull area is 1.4 m^2. What i_s the skin fric_tion drangarrow_forwardBooks on porous media and atomization claim that the viscosityμ and surface tension Y of a fl uid can be combinedwith a characteristic velocity U to form an important dimensionlessparameter. ( a ) Verify that this is so. ( b ) Evaluatethis parameter for water at 20°C and a velocity of3.5 cm/s. Note: You get extra credit if you know the nameof this parameter.arrow_forward
- The drag of a sonar transducer is to be predicted, based on wind (Air) tunnel test data. The prototype is 1.5 m diameter sphere, is to be towed at 4.3 m/s in seawater. The model is 0.2 m diameter. Take: Air density = 1.2 kg/m, Air dynamic viscosity = 1.81 x 10$ Pa. s, seawater density = 1000 kg/m, seawater dynamic viscosity 1.813x 10 Pa s, If the drag of the model at these test conditions is 9.5 N, estimate the drag of the prototype in (N).arrow_forwardsolve the question given in the image provided quickly.arrow_forwardIn fluid mechanics, which of the following are true: (a) Fluid mechanics is the branch of science concerned with stationary fluids (b) Fluids like water posses only potential energy (c) The field of fluid mechanics is infinite and endless (d) It is a branch of physics which concerns the study of liquids and the ways in which they interact with forces (e) It is a sience concerned with the response of fluids to forces exerted upon them, (f) the fluid which is in state of rest is called as static fluid and its study is called as statics.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY