EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 10, Problem 8CP
A box fan sits on the floor of a very large room (Fig. P10-8C). Label regions of the flow field that may be approximated as static. Label regions in which the irrotational approximation is likely to be appropriate. Label regions where tie boundary layer approximation mar be appropriate. Finally. label regions- in which the full Navier-Stokes equation most likely needs to be solved (i.e.. regions where no approximation is appropriate).
FIGURE P10-8C
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which dimensionless parameter does not appear in the nondimensionalized Navier–Stokes equation? (a) Reynolds number (b) Prandtl number (c) Strouhal number (d ) Euler number (e) Froude number
Consider a three-dimensional, incompressible, irrotationalfl ow. Use the following two methods to prove that theviscous term in the Navier-Stokes equation is identicallyzero: (a) using vector notation; and (b) expanding out thescalar terms and substituting terms from the defi nition ofirrotationality.
Consider a boundary layer growing along a thin flat plate. This problem involves the following parameters: boundary layer thickness ? , downstream distance x, free-stream velocity V, fluid density ? , and fluid viscosity ? . The number of primary dimensions represented in this problem is (a) 1 (b) 2 (c) 3 (d ) 4 (e) 5
Chapter 10 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 10 - Discuss how nondimensalizsionalization of the...Ch. 10 - Prob. 2CPCh. 10 - Expalain the difference between an “exact”...Ch. 10 - Prob. 4CPCh. 10 - Prob. 5CPCh. 10 - Prob. 6CPCh. 10 - Prob. 7CPCh. 10 - A box fan sits on the floor of a very large room...Ch. 10 - Prob. 9PCh. 10 - Prob. 10P
Ch. 10 - Prob. 11PCh. 10 - In Example 9-18 we solved the Navier-Stekes...Ch. 10 - Prob. 13PCh. 10 - A flow field is simulated by a computational fluid...Ch. 10 - In Chap. 9(Example 9-15), we generated an “exact”...Ch. 10 - Prob. 16CPCh. 10 - Prob. 17CPCh. 10 - A person drops 3 aluminum balls of diameters 2 mm,...Ch. 10 - Prob. 19PCh. 10 - Prob. 20PCh. 10 - Prob. 21PCh. 10 - Prob. 22PCh. 10 - Prob. 23PCh. 10 - Prob. 24PCh. 10 - Prob. 25PCh. 10 - Prob. 26PCh. 10 - Prob. 27PCh. 10 - Consider again the slipper-pad bearing of Prob....Ch. 10 - Consider again the slipper the slipper-pad bearing...Ch. 10 - Prob. 30PCh. 10 - Prob. 31PCh. 10 - Prob. 32PCh. 10 - Prob. 33PCh. 10 - Prob. 34EPCh. 10 - Discuss what happens when oil temperature...Ch. 10 - Prob. 36PCh. 10 - Prob. 38PCh. 10 - Prob. 39CPCh. 10 - Prob. 40CPCh. 10 - Prob. 41PCh. 10 - Prob. 42PCh. 10 - Prob. 43PCh. 10 - Prob. 44PCh. 10 - Prob. 45PCh. 10 - Prob. 46PCh. 10 - Prob. 47PCh. 10 - Prob. 48PCh. 10 -
Ch. 10 - Prob. 50CPCh. 10 - Consider the flow field produced by a hair dayer...Ch. 10 - In an irrotational region of flow, the velocity...Ch. 10 -
Ch. 10 - Prob. 54CPCh. 10 - Prob. 55PCh. 10 - Prob. 56PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 58PCh. 10 - Consider the following steady, two-dimensional,...Ch. 10 - Prob. 60PCh. 10 - Consider a steady, two-dimensional,...Ch. 10 -
Ch. 10 - Prob. 63PCh. 10 - Prob. 64PCh. 10 - Prob. 65PCh. 10 - In an irrotational region of flow, we wtite the...Ch. 10 - Prob. 67PCh. 10 - Prob. 68PCh. 10 - Water at atmospheric pressure and temperature...Ch. 10 - The stream function for steady, incompressible,...Ch. 10 -
Ch. 10 - We usually think of boundary layers as occurring...Ch. 10 - Prob. 73CPCh. 10 - Prob. 74CPCh. 10 - Prob. 75CPCh. 10 - Prob. 76CPCh. 10 - Prob. 77CPCh. 10 - Prob. 78CPCh. 10 - Prob. 79CPCh. 10 - Prob. 80CPCh. 10 - Prob. 81CPCh. 10 -
Ch. 10 - On a hot day (T=30C) , a truck moves along the...Ch. 10 - A boat moves through water (T=40F) .18.0 mi/h. A...Ch. 10 - Air flows parallel to a speed limit sign along the...Ch. 10 - Air flows through the test section of a small wind...Ch. 10 - Prob. 87EPCh. 10 - Consider the Blasius solution for a laminar flat...Ch. 10 - Prob. 89PCh. 10 - A laminar flow wind tunnel has a test is 30cm in...Ch. 10 - Repeat the calculation of Prob. 10-90, except for...Ch. 10 - Prob. 92PCh. 10 - Prob. 93EPCh. 10 - Prob. 94EPCh. 10 - In order to avoid boundary laver interference,...Ch. 10 - The stramwise velocity component of steady,...Ch. 10 - For the linear approximation of Prob. 10-97, use...Ch. 10 - Prob. 99PCh. 10 - One dimension of a rectangular fiat place is twice...Ch. 10 - Prob. 101PCh. 10 - Prob. 102PCh. 10 - Prob. 103PCh. 10 - Static pressure P is measured at two locations...Ch. 10 - Prob. 105PCh. 10 - For each statement, choose whether the statement...Ch. 10 - Prob. 107PCh. 10 - Calculate the nine components of the viscous...Ch. 10 - In this chapter, we discuss the line vortex (Fig....Ch. 10 - Calculate the nine components of the viscous...Ch. 10 - Prob. 111PCh. 10 - The streamwise velocity component of a steady...Ch. 10 - For the sine wave approximation of Prob. 10-112,...Ch. 10 - Prob. 115PCh. 10 - Suppose the vertical pipe of prob. 10-115 is now...Ch. 10 - Which choice is not a scaling parameter used to o...Ch. 10 - Prob. 118PCh. 10 - Which dimensionless parameter does not appear m...Ch. 10 - Prob. 120PCh. 10 - Prob. 121PCh. 10 - Prob. 122PCh. 10 - Prob. 123PCh. 10 - Prob. 124PCh. 10 - Prob. 125PCh. 10 - Prob. 126PCh. 10 - Prob. 127PCh. 10 - Prob. 128PCh. 10 - Prob. 129PCh. 10 - Prob. 130PCh. 10 - Prob. 131PCh. 10 - Prob. 132PCh. 10 - Prob. 133PCh. 10 - Prob. 134PCh. 10 - Prob. 135PCh. 10 - Prob. 136PCh. 10 - Prob. 137PCh. 10 - Prob. 138P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Which nondimensional parameter in the nondimensionalized Navier–Stokes equation is eliminated by use of modified pressure instead of actual pressure? Explain.arrow_forwardThe x-component of the Navier-Stokes equations is given below. Convert it to dimensionless form using a velocity scale U, a length scale I, and a pressure scale P. du at du du du +u+v+w. = ax dy az 1 op μdu du du + + pax² ay ² a=² paxarrow_forwardBy nondimensionalizing the Navier-Stokes equations; Obtain from Reynolds number, Grashof number and Froude number type. Discuss the physical meaning of each dimensionless number.arrow_forward
- Derive the Navier stokes equation in detail.If you copy from other source I will give you thumbs down.arrow_forwardRederive Pouiseuelle’s Law for flow in a tube using the Navier-Stokes strategy. What are the boundary conditions you will use? (you can use a horizontal tube with no gravity at play and just small p, not script p)arrow_forwardConsider fully developed two-dimensional Poiseuille flow—flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in Fig. (dP/dx is constant and negative.) The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by u = 1/2? dP/dx (y2 − hy) ? = 0where ?isthefluid’sviscosity.Isthisflowrotationalorirrotational? If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise?arrow_forward
- Please do it carefully and all the three parts I'll like your solutionarrow_forwardHow could the fluid flow variable be introduced into the following simplified Navier-Stokes equation? If you consider: -The fluid is incompressible P dv at µAv + VP = 0 (Ctrl) -arrow_forwardDetermine whether the following velocity fields are one two three dimensional Are fields steady or unsteady both? classify - or V- [acbay V = ê ca) ax²i t bxj 2 (6) (c) . axyi-byztj %3D (d) = axi-byitlt-cz)k %3Darrow_forward
- write Prandtl's boundary layer equation with appropriate boundary conditionsarrow_forwardHow does the Navier-Stokes equation encapsulate the complexities of fluid behavior, and what challenges arise when attempting to solve it in the context of mechanical engineering's fluid mechanicsarrow_forwardnot only tell correct answer but also provide proper explanationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY