
Concept explainers
Interpretation:
The mole fraction, partial pressure and total pressure are to be determined.
Concept introduction:
The mole fraction of an individual gas for the combination of gases is the ratio of the moles of the individual gas to the total number of moles of the gaseous mixture.
Here,
Also, the mole fraction of an individual gas for the combination of gases can be calculated from the ratio of the partial pressure of the individual gases with the total pressure of the combination.
Here,
Ideal Gas Equation is given as
where,

Answer to Problem 74QP
Solution:
(a) All figures have the same mole fraction of gas A.
(b) Figure (iii)
(c) Figure (iii)
Explanation of Solution
a) Container that has the smallest mole fraction of gas A(red)
The red ball sphere represents the gas A.
The green ball sphere represents the gas B.
The blue ball sphere represents the gas C.
In the figure (i),
The number of moles of gas A is
The number of moles of gas B is
The number of moles of gas C is
Calculate the total number of moles as follows:
Substitute 3 for A, 2 for B and 4 for C in the above equation.
Calculate the mole fraction of gas A as follows:
Substitute
In the figure (ii),
The number of moles of gas A is
The number of moles of gas B is
The number of moles of gas C is
Calculate the total number of moles as follows:
Substitute 4 for A, 3 for B and 5 for C in the above equation.
Calculate the mole fraction of gas A as follows:
Substitute
In the figure (iii),
The number of moles of gas A is
The number of moles of gas B is
The number of moles of gas C is
Calculate the total number of moles as follows:
Substitute 5 for A, 4 for B and 6 for C in the above equation.
Calculate the mole fraction of gas A as follows:
Substitute
All the three diagrams have the same value of mole fraction of gas A, which is three.
Hence, all the three diagrams represent the same value of mole fraction of gas A.
b) Container that has the highest partial pressure of gas B (green)
The volume and temperature are constant for all the three figures, so, the total pressure will now depend directly on the number of moles.
For figure (i),
The total pressure of gas B in figure (i) is as follows:
Calculate the mole fraction of gas B in figure (i) as follows:
Substitute
Calculate the partial pressure of gas B in figure (i) as follows:
Substitute
For figure (ii),
The total pressure of gas B in figure (ii) is as follows:
Calculate the mole fraction of gas B in figure (ii) as follows:
Substitute
Calculate the partial pressure of gas B in figure (ii) as follows:
Substitute
For figure (iii),
The total pressure of gas B in figure (iii) is as follows:
Calculate the mole fraction of gas B in figure (iii) as follows:
Substitute
Calculate the partial pressure of gas B in figure (iii) as follows:
Substitute
Hence, the partial pressure of gas B is maximum in figure (iii).
c) Container that has the highest total pressure
The volume and temperature are constant for all the three figures, so, the total pressure will now depend directly on the number of moles.
Therefore, the total pressure for each diagram is calculated as follows:
The total pressure in figure (i) is:
The total pressure in figure (ii) is:
The total pressure in figure (iii) is:
Hence, figure (iii) represents the maximum total pressure.
Want to see more full solutions like this?
Chapter 10 Solutions
EBK CHEMISTRY
- 3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forwardWhat are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forward
- A block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forwardCan u help me figure out the reaction mechanisms for these, idk where to even startarrow_forward
- Hi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forward
- Indicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forwardDraw the starting material that would be needed to make this product through an intramolecular Dieckmann reactionarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




