EBK CHEMISTRY
4th Edition
ISBN: 8220102797864
Author: Burdge
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 10, Problem 46QP
Interpretation Introduction
Interpretation:
Theozone moleculespresent in 1.0L of air are to be calculated.
Concept Introduction:
The ideal gas equation elaborates the physical properties of gases by relating the pressure, volume, temperature, and number of moles linked with each other with the help of four
Here,
The number of molecules in a mole can be calculated as
Here,
Avogadro’s number is defined as the number of units in one mole of any substance and is equal to 6.022140857 × 1023.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ozone molecules in the stratosphere absorb much of the harmful radiation from the sun. How many ozone molecules are present in 4.00 L of air under the stratospheric ozone conditions of 249 K temperature and 1.67 × 10−3 atm pressure?
Given that the concentration of CH4 in the atmosphere is 1.8 ppm, calculate the total
mass of this gas that is present in the atmosphere. Note that the total mass of the
atmosphere is 5.1 x 1018 kg and that its average molar mass is 29.0 g/mol.
Although ozone is an important component of the upper atmosphere, long-term exposure to ozone in the air we breathe can cause inflammation of the lung, impairment of lung defense mechanisms, and irreversible changes in lung structure. The EPA has set an 8 hour limit for ozone of 0.08 ppm as an air quality standard for cities. At the EPA limit, how many ozone molecules are present in 5.0 liters of air at 25 °C and 0.967 atm? (Hint: assume that air is an ideal gas and calculate the total number of molecules there are in 5.0 L. Then use the definition of ppm.)
Chapter 10 Solutions
EBK CHEMISTRY
Ch. 10.1 - Practice ProblemATTEMPT What pressure (in atm) is...Ch. 10.1 - Prob. 1PPBCh. 10.1 - Prob. 1PPCCh. 10.1 - Express a pressure of 1 .15 atm in units of bar....Ch. 10.1 - Prob. 2CPCh. 10.1 - Prob. 3CPCh. 10.1 - Prob. 4CPCh. 10.1 - Prob. 5CPCh. 10.2 - Prob. 1PPACh. 10.2 - Practice ProblemBUILD At what pressure would a...
Ch. 10.2 - Prob. 1PPCCh. 10.2 - 10.2.1 Given .
Ch. 10.2 - Prob. 2CPCh. 10.2 - 10.2.3 At what temperature will a gas sample...Ch. 10.2 - What volume of NH 3 will be produced when 180 mL...Ch. 10.2 - Prob. 5CPCh. 10.2 - Prob. 6CPCh. 10.3 - Practice ProblemATTEMPT A sample of gas originally...Ch. 10.3 - Practice ProblemBUILD At what temperature (in °C )...Ch. 10.3 - Prob. 1PPCCh. 10.3 - Prob. 1CPCh. 10.3 - Prob. 2CPCh. 10.3 - Prob. 3CPCh. 10.3 - Prob. 4CPCh. 10.4 - Practice ProblemATTEMPT What volume (in liters) of...Ch. 10.4 - Practice ProblemBUILD What volumes (in liters) of...Ch. 10.4 - Practice Problem CONCEPTUALIZE
A hypothetical...Ch. 10.4 - Prob. 1CPCh. 10.4 - Prob. 2CPCh. 10.5 - Practice Problem ATTEMPT
What would be the volume...Ch. 10.5 - Prob. 1PPBCh. 10.5 - Prob. 1PPCCh. 10.5 - Prob. 1CPCh. 10.5 - Prob. 2CPCh. 10.5 - Prob. 3CPCh. 10.5 - 10.5.4 What mass of acetylene is produced by the...Ch. 10.5 - In the following diagram, each color represents a...Ch. 10.5 - Prob. 6CPCh. 10.6 - Practice ProblemATTEMPT What is the volume of 5.12...Ch. 10.6 - Practice ProblemBUILD At what temperature ( in °C...Ch. 10.6 - Practice Problem CONCEPTUALIZE
The diagram shown...Ch. 10.6 - Prob. 1CPCh. 10.6 - Prob. 2CPCh. 10.7 - Practice Problem ATTEMPT
Calculate the density of...Ch. 10.7 - Prob. 1PPBCh. 10.7 - Prob. 1PPCCh. 10.7 - Prob. 1CPCh. 10.7 - Prob. 2CPCh. 10.8 - Practice Problem ATTEMPT Determine the molar mass...Ch. 10.8 - Practice Problem BUILD
A sample of the volatile...Ch. 10.8 - Practice ProblemCONCEPTUALIZE These models...Ch. 10.9 - Practice Problem ATTEMPT
What volume (in liters)...Ch. 10.9 - Practice Problem BUILD What mass (in grams) of Na...Ch. 10.9 - Prob. 1PPCCh. 10.10 - Practice Problem ATTEMPT Using all the same...Ch. 10.10 - Practice ProblemBUILD By how much would the...Ch. 10.10 - Prob. 1PPCCh. 10.11 - Prob. 1PPACh. 10.11 - Prob. 1PPBCh. 10.11 - Prob. 1PPCCh. 10.12 - Practice Problem ATTEMPT Determine the partial...Ch. 10.12 - Practice Problem BUILD
Determine the number of...Ch. 10.12 - Prob. 1PPCCh. 10.13 - Prob. 1PPACh. 10.13 - Practice ProblemBUILD Determine the partial...Ch. 10.13 - Prob. 1PPCCh. 10.14 - Practice Problem ATTEMPT
Calculate the mass of ...Ch. 10.14 - Practice ProblemBUILD Determine the volume of gas...Ch. 10.14 - Practice ProblemCONCEPTUALIZE The first diagram...Ch. 10.15 - Prob. 1PPACh. 10.15 - Practice ProblemBUILD What chamber pressure would...Ch. 10.15 - Practice ProblemCONCEPTUALIZE The diagram on the...Ch. 10.16 - Prob. 1PPACh. 10.16 - Practice ProblemBUILD Determine the molar mass and...Ch. 10.16 - Practice ProblemCONCEPTUALIZE The diagram on the...Ch. 10.17 - Practice ProblemATTEMPT Using data from Table...Ch. 10.17 - Practice ProblemBUILD Calculate the pressure...Ch. 10.17 - Practice ProblemCONCEPTUALIZE What properties of...Ch. 10 - Determine the mole fraction of helium in a gaseous...Ch. 10 - Prob. 2KSPCh. 10 - Determine the mole fraction of water in a solution...Ch. 10 - Prob. 4KSPCh. 10 - Prob. 1QPCh. 10 - Prob. 2QPCh. 10 - Prob. 3QPCh. 10 - Prob. 4QPCh. 10 - Prob. 5QPCh. 10 - Prob. 6QPCh. 10 - Prob. 7QPCh. 10 - Prob. 8QPCh. 10 - Prob. 9QPCh. 10 - Prob. 10QPCh. 10 - Prob. 11QPCh. 10 - Prob. 12QPCh. 10 - Prob. 13QPCh. 10 - Prob. 14QPCh. 10 - Calculate the height of a column of methanol (C H...Ch. 10 - Prob. 16QPCh. 10 - What pressure (in atm) is exerted by a column of...Ch. 10 - What pressure (in atm) is exerted by a column of...Ch. 10 - Prob. 19QPCh. 10 - Prob. 20QPCh. 10 - Prob. 21QPCh. 10 - Prob. 22QPCh. 10 - Prob. 23QPCh. 10 - A sample of air occupies 3.8 L when the pressure...Ch. 10 - Prob. 25QPCh. 10 - 10.26 Under constant-pressure conditions a sample...Ch. 10 - 10.27 Ammonia bums in oxygen gas to form nitric...Ch. 10 - Molecular chlorine and molecular fluorine combine...Ch. 10 - A gaseous sample of a substance is cooled at...Ch. 10 - Consider the following gaseous sample in a...Ch. 10 - Prob. 31QPCh. 10 - Prob. 32QPCh. 10 - Prob. 33QPCh. 10 - Prob. 34QPCh. 10 - 10.35 Given that 6.9 moles of carbon monoxide gas...Ch. 10 - What volume will 9.8 moles of sulfur hexafluoride...Ch. 10 - Prob. 37QPCh. 10 - Prob. 38QPCh. 10 - Prob. 39QPCh. 10 - An ideal gas originally at 0.85 atm and 66°C was...Ch. 10 - Calculate the volume (in liters) of 124.3 g of CO...Ch. 10 - Prob. 42QPCh. 10 - Prob. 43QPCh. 10 - Prob. 44QPCh. 10 - At 741 torr and 44°C, 7.10 g of a gas occupies a...Ch. 10 - Prob. 46QPCh. 10 - Assuming that air contains 78 percent N 2 , 21...Ch. 10 - 10.48 A 2.10-L vessel contains 4.65 g of a gas at...Ch. 10 - Calculate the density of hydrogen bromide ( HBr )...Ch. 10 - A certain anesthetic contains 64.9 percent C, 13.5...Ch. 10 - A compound has the empirical formula SF 4 . At...Ch. 10 - Prob. 52QPCh. 10 - Prob. 53QPCh. 10 - Prob. 54QPCh. 10 - Methane, the principal component of natural gas,...Ch. 10 - Prob. 56QPCh. 10 - In alcohol fermentation, yeast converts glucose to...Ch. 10 - A compound of P and F was analyzed as follows:...Ch. 10 - 10.59 A quantity of 0.225 g of a metal M (molar...Ch. 10 - Prob. 60QPCh. 10 - Prob. 61QPCh. 10 - Prob. 62QPCh. 10 - Ethanol ( C 2 H 5 OH ) burns in air: C 2 H 5 OH( l...Ch. 10 - Prob. 64QPCh. 10 - Prob. 65QPCh. 10 - Prob. 66QPCh. 10 - A 2.5-L flask at 15°C contains a mixture of N 2 ,...Ch. 10 - Dry air near sea level has the following...Ch. 10 - Prob. 69QPCh. 10 - Prob. 70QPCh. 10 - 10.71 A sample of zinc metal reacts completely...Ch. 10 - Prob. 72QPCh. 10 - Prob. 73QPCh. 10 - Prob. 74QPCh. 10 - 10.75 The volume of the box on the right is twice...Ch. 10 - Prob. 76QPCh. 10 - Prob. 77QPCh. 10 - Prob. 78QPCh. 10 - Prob. 79QPCh. 10 - Prob. 80QPCh. 10 - Prob. 81QPCh. 10 - Compare the root-mean-square speeds of O 2 and U F...Ch. 10 - Prob. 83QPCh. 10 - Prob. 84QPCh. 10 - 10.85 At a certain temperature the speeds of six...Ch. 10 - Prob. 86QPCh. 10 - Prob. 87QPCh. 10 - Prob. 88QPCh. 10 - Prob. 89QPCh. 10 - Cite two pieces of evidence to show that gases do...Ch. 10 - Figure 10.25(a) shows that at o°C , with the...Ch. 10 - 10.92 Write the van der Waals equation for a real...Ch. 10 - Prob. 93QPCh. 10 - Prob. 94QPCh. 10 - Prob. 95QPCh. 10 - 10.96 Discuss the following phenomena in terms of...Ch. 10 - Prob. 97APCh. 10 - Prob. 98APCh. 10 - Prob. 99APCh. 10 - Prob. 100APCh. 10 - Prob. 101APCh. 10 - Prob. 102APCh. 10 - On heating, potassium chlorate ( KClO 3 )...Ch. 10 - Prob. 104APCh. 10 - Prob. 105APCh. 10 - Prob. 106APCh. 10 - Prob. 107APCh. 10 - Prob. 108APCh. 10 - Prob. 109APCh. 10 - Prob. 110APCh. 10 - A mixture of Na 2 CO 3 and MgCO 3 of mass 7.63 g...Ch. 10 - Prob. 112APCh. 10 - Prob. 113APCh. 10 - Prob. 114APCh. 10 - Prob. 115APCh. 10 - Prob. 116APCh. 10 - Prob. 117APCh. 10 - Prob. 118APCh. 10 - Prob. 119APCh. 10 - Prob. 120APCh. 10 - Prob. 121APCh. 10 - Prob. 122APCh. 10 - Prob. 123APCh. 10 - Prob. 124APCh. 10 - Prob. 125APCh. 10 - Prob. 126APCh. 10 - Prob. 127APCh. 10 - Prob. 128APCh. 10 - Prob. 129APCh. 10 - Prob. 130APCh. 10 - Prob. 131APCh. 10 - Prob. 132APCh. 10 - Prob. 133APCh. 10 - Prob. 134APCh. 10 - Prob. 135APCh. 10 - Prob. 136APCh. 10 - Prob. 137APCh. 10 - Prob. 138APCh. 10 - Prob. 139APCh. 10 - Given that the van der Waals constant b is the...Ch. 10 - Prob. 141APCh. 10 - Prob. 142APCh. 10 - Prob. 143APCh. 10 - Prob. 144APCh. 10 - Prob. 145APCh. 10 - Prob. 146APCh. 10 - Prob. 147APCh. 10 - Prob. 148APCh. 10 - A 5.00-mol sample of NH 3 gas is kept in a 1.92-L...Ch. 10 - In the metallurgical process of refining nickel,...Ch. 10 - Some commercial drain cleaners contain a mixture...Ch. 10 - Prob. 152APCh. 10 - Prob. 153APCh. 10 - Prob. 154APCh. 10 - Prob. 155APCh. 10 - 10. 156 Air entering the lungs ends up in tiny...Ch. 10 - Prob. 157APCh. 10 - Prob. 158APCh. 10 - Prob. 159APCh. 10 - Prob. 160APCh. 10 - The percent by mass of bicarbonate ( HCO 3 ) in a...Ch. 10 - Prob. 162APCh. 10 - Prob. 163APCh. 10 - Prob. 164APCh. 10 - Prob. 165APCh. 10 - Prob. 166APCh. 10 - Prob. 167APCh. 10 - Venus's atmosphere is composed of 96.5 percent CO...Ch. 10 - Acidic oxides such as carbon dioxide react with...Ch. 10 - Prob. 170APCh. 10 - 10.171 In a constant-pressure calorimetry...Ch. 10 - Prob. 2SEPPCh. 10 - Prob. 3SEPPCh. 10 - Prob. 4SEPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forward
- Name a favorable effect of the global increase of CO2 in the atmosphere.arrow_forwardThe atmosphere is a highly complex gaseous mixture that sustains life on Earth. Approximately 99% of the air is composed of nitrogen (N2) and oxygen (O2). The remaining 1% is made up of a variety of other gases, including carbon monoxide (CO), hydrogen (H2), and ammonia (NH3), among many others. Because most of the gases that comprise the atmosphere are present at very low levels (<0.002%), their quantities are often expressed in parts per million (ppm) or parts per billion (ppb) rather than as a percent. Ozone (O3) is found in the troposphere at 2.5×10−6%. Convert this value to parts per million. [O3]= _______ ppm The atmosphere contains 2.9×10−7%2.9×10−7% nitrogen dioxide (NO2). Convert this value to parts per billion. [NO2]= _______ ppb Atmospheric methane (CH4) is present at 1983 ppb. Convert this value to a percentage. [CH4]= _______ %arrow_forwardA flask contains a mixture of neon (Ne), krypton (Kr), and radon (Rn) gases. Compare (a) the average kinetic energies of the three types of atoms and (b) the root-mean-square speeds. (Hint: Appendix D shows the molar mass (in g>mol) of each element under the chemical symbol for that element.)arrow_forward
- Explain the role of ozone gas in troposphere and stratosphere. What do you understand by ozone layer depletion? Explain the causes and solution of ozone layer depletion.arrow_forwardThe vapor pressure of mercury at 20 oC is 1.7 x 10-6 atm. Your lab partner breaks a mercury thermometer and spills most of the mercury onto the floor. The dimensions of the laboratory are 16.0 m x 8.0 m x 3.0 m (l x w x h). At 20 oC, calculate the mass (in grams) of the mercury vapor in the room. Determine if the concentration of mercury vapor exceeds air quality regulations of 5.0 x 10-2 mg/m3. How would you clean up this spell?arrow_forwardA balloon is sealed with 1.00 mol argon in a laboratory. The laboratory workspace is at sea level and the temperature is room temperature. From the list of choices below. check all of the changes that would increase the volume of this balloon. Placing the balloon into a warm (40 °C) environment, such as a water bath. Moving the balloon to a different room-temperature laboratory at the top of a mountain. Somehow (magically?) changing all of the argon atoms in the balloon to xenon atoms. Allowing 0.10 mol of argon to be removed from the balloon.arrow_forward
- How many ozone molecules are in 1.0 L of air in Mexico City? Assume T = 25 °C.arrow_forwardOzone depletion at mid-latitudes may be caused by the denitrification of cold sulphuric acid droplets. Is this correct?please explain the reason.arrow_forwardPlease send me the question in 20 minutes it's very urgent plzarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning