The value of [OH - ] in aqueous solutions with the hydronium ion concentration of 5 .5×10 -2 M has to be indicated as acidic, basic or neutral. Concept Introduction: Dissociation constant of water: The dissociation of water can be given as H 2 O (l) + H 2 O (l) ⇄ H 3 O + (aq) + OH - (aq) The concentrations of H 3 O + and OH - at room temperature are 1 .0×10 -7 M each. [H 3 O + ] = [OH - ] = 1 .0×10 -7 If concentration of H 3 O + is higher than 1 .0×10 -7 M , it is said to be acidic solution. If concentration of OH − is higher than 1 .0×10 -7 M , it is said to be basic solution.
The value of [OH - ] in aqueous solutions with the hydronium ion concentration of 5 .5×10 -2 M has to be indicated as acidic, basic or neutral. Concept Introduction: Dissociation constant of water: The dissociation of water can be given as H 2 O (l) + H 2 O (l) ⇄ H 3 O + (aq) + OH - (aq) The concentrations of H 3 O + and OH - at room temperature are 1 .0×10 -7 M each. [H 3 O + ] = [OH - ] = 1 .0×10 -7 If concentration of H 3 O + is higher than 1 .0×10 -7 M , it is said to be acidic solution. If concentration of OH − is higher than 1 .0×10 -7 M , it is said to be basic solution.
The value of [OH-] in aqueous solutions with the hydronium ion concentration of 5.5×10-2 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(a)
Expert Solution
Explanation of Solution
Given,
Hydronium ion concentration= 5.5×10-2 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][OH-]=Kw[H3O+][OH-]=1.0×10-14M5.5×10-2M[OH-]=1.8×10-13 M.
The [OH-] in aqueous solutions with the hydronium ion concentration of 5.5×10-2 M is 1.8×10-13 M.
The hydronium ion concentration is 5.5×10-2 M and the hydroxide ion concentration is 1.8×10-13 M. As hydronium ion concentration is higher, the solution will be acidic.
(b)
Interpretation Introduction
Interpretation:
The value of [OH-] in aqueous solutions with the hydronium ion concentration of 9.4×10-5 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(b)
Expert Solution
Explanation of Solution
Given,
Hydronium ion concentration= 9.4×10-5 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][OH-]=Kw[H3O+][OH-]=1.0×10-14M9.4×10-5M[OH-]=1.1×10-10 M.
The [OH-] in aqueous solutions with the hydronium ion concentration of 9.4×10-5 M is 1.1×10-10 M.
The hydronium ion concentration is 9.4×10-5 M and the hydroxide ion concentration is 1.1×10-10 M. As hydronium ion concentration is higher, the solution will be acidic.
(c)
Interpretation Introduction
Interpretation:
The value of [OH-] in aqueous solutions with the hydronium ion concentration of 2.3×10-7 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(c)
Expert Solution
Explanation of Solution
Given,
Hydronium ion concentration= 2.3×10-7 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][OH-]=Kw[H3O+][OH-]=1.0×10-14M2.3×10-7 M[OH-]=4.3×10-8 M.
The [OH-] in aqueous solutions with the hydronium ion concentration of 2.3×10-7 M is 4.3×10-8 M.
The hydronium ion concentration is 2.3×10-7 M and the hydroxide ion concentration is 4.3×10-8 M. As hydronium ion concentration is higher, the solution will be acidic.
(d)
Interpretation Introduction
Interpretation:
The value of [OH-] in aqueous solutions with the hydronium ion concentration of 6.6×10-12 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(d)
Expert Solution
Explanation of Solution
Given,
Hydronium ion concentration= 6.6×10-12 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][OH-]=Kw[H3O+][OH-]=1.0×10-14M6.6×10-12 M[OH-]=1.5×10-3 M.
The [OH-] in aqueous solutions with the hydronium ion concentration of 6.6×10-12 M is 1.5×10-3 M.
The hydronium ion concentration is 6.6×10-12 M and the hydroxide ion concentration is 1.5×10-3 M. As hydronium ion concentration is lesser, the solution will be basic.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
" is
The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3
best described as a hybrid of several contributing resonance forms, two of which
are shown here.
HO
:0:
:Ö:
HO
+
Bicarbonate is crucial for the control of body pH (for example, blood pH:
7.4). A more self-indulgent use is in baking soda, where it serves as a
source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy
constituency.
(i) Draw at least one additional resonance form.
=
(ii) Using curved "electron-pushing" arrows, show how these Lewis structures may
be interconverted by movement of electron pairs. (iii) Determine which form or
forms will be the major contributor(s) to the real structure of bicarbonate,
explaining your answer on the basis of the criteria in Section 1-5.
Which of these is the best use of a volumetric flask?
measuring how much liquid it contains
delivering a precise amount of liquid to another container
holding solutions
making solutions of precise concentration
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.