When added small amount of strong base the changes of buffer solution concentration has to be discussed. Concept Introduction: A buffer is an aqueous solution containing substances that prevent major changes in solution pH when small amounts of acid or base are added to it. pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The value pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ] Based on the pH value, a solution can be classified as acidic, basic or neutral solution. pH < 7, acidic solution pH > 7, basic solution pH = 7, neutral solution Strong acid: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acid: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely.
When added small amount of strong base the changes of buffer solution concentration has to be discussed. Concept Introduction: A buffer is an aqueous solution containing substances that prevent major changes in solution pH when small amounts of acid or base are added to it. pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The value pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ] Based on the pH value, a solution can be classified as acidic, basic or neutral solution. pH < 7, acidic solution pH > 7, basic solution pH = 7, neutral solution Strong acid: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Weak acid: In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium. For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization. In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely.
Solution Summary: The author explains that a buffer solution contains substances that prevent major changes in solution pH when small amounts of acid or base are added.
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Weak acid:
In weak acids, the ionization of acid is not complete. This implies that the concentration of the hydrogen ion or hydronium ion will not be equal to the initial concentration of the acid at equilibrium.
For strong acids the concentration of acid will be same as that of the concentration of hydrogen ions, because strong acids undergo complete ionization.
In case of weak acid, the concentration of hydrogen ion will be less than the concentration of given acid; since weak acid does not ionize completely.
Draw the complete mechanism for the reaction below. Please include appropriate arrows, intermediates, and formal charges.
(c) The following data have been obtained for the hydrolysis of sucrose, C12H22O11, to
glucose, C6H12O6, and fructose C6H12O6, in acidic solution:
C12H22O11 + H2O → C6H12O6 + C6H12O6
[sucrose]/mol dm³
t/min
0
0.316
14
0.300
39
0.274
60
0.256
80
0.238
110
0.211
(i) Graphically prove the order of the reaction and determine the rate constant of the
reaction.
(ii) Determine the half-life, t½ for the hydrolysis of sucrose.
(III) adsorbent
(b) Adsorption of the hexacyanoferrate (III) ion, [Fe(CN)6] ³, on y-Al2O3 from aqueous
solution was examined. The adsorption was modelled using a modified Langmuir
isotherm, yielding the following values of Kat pH = 6.5:
(ii)
T/K
10-10 K
280
2.505
295
1.819
310
1.364
325
1.050
Determine the enthalpy of adsorption, AadsHⓇ.
If the reported value of entropy of adsorption, Aads Se = 146 J K-1 mol-1 under the above
conditions, determine Aads Gº.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell