The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 4 .2×10 -4 M has to be indicated as acidic, basic or neutral. Concept Introduction: Dissociation constant of water: The dissociation of water can be given as H 2 O (l) + H 2 O (l) ⇄ H 3 O + (aq) + OH - (aq) The concentrations of H 3 O + and OH - at room temperature are 1 .0×10 -7 M each. [H 3 O + ] = [OH - ] = 1 .0×10 -7 If concentration of H 3 O + is higher than 1 .0×10 -7 M , it is said to be acidic solution. If concentration of OH − is higher than 1 .0×10 -7 M , it is said to be basic solution.
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 4 .2×10 -4 M has to be indicated as acidic, basic or neutral. Concept Introduction: Dissociation constant of water: The dissociation of water can be given as H 2 O (l) + H 2 O (l) ⇄ H 3 O + (aq) + OH - (aq) The concentrations of H 3 O + and OH - at room temperature are 1 .0×10 -7 M each. [H 3 O + ] = [OH - ] = 1 .0×10 -7 If concentration of H 3 O + is higher than 1 .0×10 -7 M , it is said to be acidic solution. If concentration of OH − is higher than 1 .0×10 -7 M , it is said to be basic solution.
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 4.2×10-4 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(a)
Expert Solution
Explanation of Solution
Given,
Hydroxide ion concentration = 4.2×10-4 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 4.2×10-4 M is 2.4×10-11 M.
The hydronium ion concentration is 2.4×10-11 M. As the concentration of H3O+ in aqueous solution is lesser than 1.0×10-7 M, the solution is basic.
(b)
Interpretation Introduction
Interpretation:
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 6.0×10-5 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(b)
Expert Solution
Explanation of Solution
Given,
Hydroxide ion concentration = 6.0×10-5 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][H3O+]=Kw[OH-][H3O+]=1.0×10-14M6.0×10-5 M[H3O+]=1.7×10-10 M
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 6.0×10-5 M is 1.1×10-10 M.
The hydronium ion concentration is 1.1×10-10 M. As the concentration of H3O+ in aqueous solution is lesser than 1.0×10-7 M, the solution is basic.
(c)
Interpretation Introduction
Interpretation:
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 3.4×10-9 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(c)
Expert Solution
Explanation of Solution
Given,
Hydroxide ion concentration = 3.4×10-9 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][H3O+]=Kw[OH-][H3O+]=1.0×10-14M3.4×10-9 M[H3O+]=2.9×10-6 M
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 3.4×10-9 M is 2.9×10-6 M.
The hydronium ion concentration is 2.9×10-6 M. As the concentration of H3O+ in aqueous solution is higher than 1.0×10-7 M, the solution is acidic.
(d)
Interpretation Introduction
Interpretation:
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 7.3×10-11 M has to be indicated as acidic, basic or neutral.
Concept Introduction:
Dissociation constant of water:
The dissociation of water can be given as
H2O(l) + H2O(l)⇄H3O+(aq) + OH-(aq)
The concentrations of H3O+ and OH- at room temperature are 1.0×10-7 M each.
[H3O+] = [OH-] = 1.0×10-7
If concentration of H3O+ is higher than 1.0×10-7 M, it is said to be acidic solution.
If concentration of OH− is higher than 1.0×10-7 M, it is said to be basic solution.
(d)
Expert Solution
Explanation of Solution
Given,
Hydroxide ion concentration = 7.3×10-11 MIon product constant for water = 1.0×10−14 M
To calculate the molar hydronium ion concentration in aqueous solutions
Kw=[H3O+][OH-][H3O+]=Kw[OH-][H3O+]=1.0×10-14M7.3×10-11 M[H3O+]=1.4×10-4 M
The molar hydronium ion concentration in aqueous solutions with the hydroxide ion concentration of 7.3×10-11 M is 1.4×10-4 M.
The hydronium ion concentration is 1.4×10-4 M. As the concentration of H3O+ in aqueous solution is higher than 1.0×10-7 M, the solution is acidic.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
22. Which of the following mutant proteins is expected to have a dominant negative effect when over-
expressed in normal cells?
a. mutant PI3-kinase that lacks the SH2 domain but retains the kinase function
b. mutant Grb2 protein that cannot bind to RTK
c. mutant RTK that lacks the extracellular domain
d. mutant PDK that has the PH domain but lost the kinase function
e. all of the above
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.