
Concept explainers
(a)
Interpretation:
Balanced chemical equation for the dissociation of
Concept-Introduction:
Electrolyte: It is a substance that is able to conduct electricity in its aqueous solution. This is due to presence of charged particles (ions) in the aqueous solution.
There are two types of electrolytes,
- Strong electrolyte: These are substances that can completely or almost completely dissociates to their corresponding ions in the aqueous solution. Strong electrolytes give solutions that are strongly conducting. Strong electrolyte includes all strong bases and strong acids and all soluble salts.
- Weak electrolyte: These are substances that dissociates incompletely into corresponding ion in aqueous solution. Weak electrolytes give solutions that are intermediate between those having strong electrolytes and those having nonelectrolytes in their ability to conduct an
electric current . Weak electrolytes include weak acids and weak bases.
Nonelectrolyte: It is a substance that does not conduct electricity in its aqueous solution. Glucose, table sugar are examples for nonelectrolytes.
(b)
Interpretation:
Balanced chemical equation for the dissociation of
Concept-Introduction:
Electrolyte: It is a substance that is able to conduct electricity in its aqueous solution. This is due to presence of charged particles (ions) in the aqueous solution.
There are two types of electrolytes,
- Strong electrolyte: These are substances that can completely or almost completely dissociates to their corresponding ions in the aqueous solution. Strong electrolytes give solutions that are strongly conducting. Strong electrolyte includes all strong bases and strong acids and all soluble salts.
- Weak electrolyte: These are substances that dissociates incompletely into corresponding ion in aqueous solution. Weak electrolytes give solutions that are intermediate between those having strong electrolytes and those having nonelectrolytes in their ability to conduct an electric current. Weak electrolytes include weak acids and weak bases.
Nonelectrolyte: It is a substance that does not conduct electricity in its aqueous solution. Glucose, table sugar are examples for nonelectrolytes.
(c)
Interpretation:
Balanced chemical equation for the dissociation of
Concept-Introduction:
Electrolyte: It is a substance that is able to conduct electricity in its aqueous solution. This is due to presence of charged particles (ions) in the aqueous solution.
There are two types of electrolytes,
- Strong electrolyte: These are substances that can completely or almost completely dissociates to their corresponding ions in the aqueous solution. Strong electrolytes give solutions that are strongly conducting. Strong electrolyte includes all strong bases and strong acids and all soluble salts.
- Weak electrolyte: These are substances that dissociates incompletely into corresponding ion in aqueous solution. Weak electrolytes give solutions that are intermediate between those having strong electrolytes and those having nonelectrolytes in their ability to conduct an electric current. Weak electrolytes include weak acids and weak bases.
Nonelectrolyte: It is a substance that does not conduct electricity in its aqueous solution. Glucose, table sugar are examples for nonelectrolytes.
(d)
Interpretation:
Balanced chemical equation for the dissociation of
Concept-Introduction:
Electrolyte: It is a substance that is able to conduct electricity in its aqueous solution. This is due to presence of charged particles (ions) in the aqueous solution.
There are two types of electrolytes,
- Strong electrolyte: These are substances that can completely or almost completely dissociates to their corresponding ions in the aqueous solution. Strong electrolytes give solutions that are strongly conducting. Strong electrolyte includes all strong bases and strong acids and all soluble salts.
- Weak electrolyte: These are substances that dissociates incompletely into corresponding ion in aqueous solution. Weak electrolytes give solutions that are intermediate between those having strong electrolytes and those having nonelectrolytes in their ability to conduct an electric current. Weak electrolytes include weak acids and weak bases.
Nonelectrolyte: It is a substance that does not conduct electricity in its aqueous solution. Glucose, table sugar are examples for nonelectrolytes.

Want to see the full answer?
Check out a sample textbook solution
Chapter 10 Solutions
General, Organic, and Biological Chemistry
- (ME EX1) Prblm #9/10 Can you explain in detail (step by step) I'm so confused with these problems. For turmber 13 can u turn them into lewis dot structures so I can better understand because, and then as well explain the resonance structure part. Thanks for the help.arrow_forwardProblems 19 and 20: (ME EX1) Can you please explain the following in detail? I'm having trouble understanding them. Both problems are difficult for me to explain in detail, so please include the drawings and answers.arrow_forward(ME EX1) Prblm #4-11 Can you please help me and explain these I'm very confused in detail please. Prblm number 9 I don't understand at all (its soo confusing to me and redraw it so I can better depict it).arrow_forward
- ME EX1) Prblm #19-20 I'm so confused with these problems. Can you please help me solve them and explain them? Problems number 19-20, and thanks! step by step and in detail for me please helparrow_forwardCalculate the flux of oxygen between the ocean and the atmosphere, given that: Temp = 18°C Salinity = 35 ppt Density = 1025 kg/m3 Oxygen concentration measured in bulk water = 263.84 mmol/m3 Wind speed = 7.4 m/s Oxygen is observed to be about 10% initially supersaturatedarrow_forward( ME EX1) Prblm 27-28: Can you explain to me both prblms in detail and for prblm 28 what do you mean bi conjugated bi ponds and those structures I'm confused...arrow_forward
- A. Determine the number of electrons in a system of cyclic conjugation (zero if no cyclic conjugation). B. Specify whether the species is "a"-aromatic, "aa"-anti-aromatic, or "na"-non-aromatic (neither aromatic nor anti-aromatic). (Presume rings to be planar unless structure obviously prevents planarity. If there is more than one conjugated ring, count electrons in the largest.) 1. A.Electrons in a cyclic conjugated system. 18 B.The compound is (a, aa, or na) a 2. A.Electrons in a cyclic conjugated system. 10 B.The compound is (a, aa, or na) naarrow_forwardWater is boiling at 1 atm pressure in a stainless steel pan on an electric range. It is observed that 2 kg of liquid water evaporates in 30 min. Find the rate of heat transfer to the water (kW).arrow_forwardCould you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the resonance structures that were given please.arrow_forward
- Could you please turn this into a complete Lewis dot structure formula for me so I can visualize it more clearly? and then do the explaining for the question.arrow_forwardplease solve. If the answer is "no error" and it asks me to type something, and i typed a-helix, its always wrong.arrow_forwardCan you please solve and explain this for me in a simple way? I cant seem to comprehend this problem.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning




