Concept explainers
(a)
Interpretation:
A solution having
Concept-Introduction:
Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in
(a)
Answer to Problem 10.145EP
A solution having
Explanation of Solution
Given data is shown below:
A charge balance exists between the ions in the given electrolyte solution when the sum of
Sum of
Thus, the sum of
Sum of
Here, the sum of
Therefore,
A solution having
(b)
Interpretation:
A solution having
Concept-Introduction:
Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in
(b)
Answer to Problem 10.145EP
A solution having
Explanation of Solution
Given data is shown below:
A charge balance exists between the ions in the given electrolyte solution when the sum of
Sum of
Thus, the sum of
Hence, the sum of
Therefore,
A solution having
(c)
Interpretation:
A solution having
Concept-Introduction:
Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in
Unit Conversion:
(c)
Answer to Problem 10.145EP
A solution having
Explanation of Solution
Given data is shown below:
A charge balance exists between the ions in the given electrolyte solution when the sum of
Here, the sum of
Therefore,
A solution having
(d)
Interpretation:
A solution having
Concept-Introduction:
Charge balance takes place when the sum of concentrations of negative ion and the sum of concentrations of positive ion becomes equal in
Unit Conversion:
(d)
Answer to Problem 10.145EP
A solution having
Explanation of Solution
Given data is shown below:
A charge balance exists between the ions in the given electrolyte solution when the sum of
Calculate the equivalence of each ions:
Sum of
Therefore,
A solution having
Want to see more full solutions like this?
Chapter 10 Solutions
General, Organic, and Biological Chemistry
- How many mEq of HCO3 are present in a solution that also contains 75 mEq of Na+, 83 mEq K+, 10 mEq Ca2+, and 153 mEq Cl?arrow_forwardClassify each of the following compounds as a strong electrolyte or a weak electrolyte. a. H3PO4 b. HNO3 c. KNO3 d. NaOHarrow_forwardHydrazine, N2H4, can interact with water in two steps. N2H4(aq) + H2O() N2H5+(aq) + OH(aq) Kb1 = 8.5 107 N2H5+(aq) + H2O() N2H62+(aq) + OH(aq) Kb2 = 8.9 1016 (a) What is the concentration of OH, N2H5+ and N2H62+ in a 0.010M aqueous solution of hydrazine? (b) What is the pH of the 0.010M solution hydrazine?arrow_forward
- Composition diagrams, commonly known as alpha plots, are often used to visualize the species in a solution of an acid or base as the pH is varied. The diagram for 0.100 M acetic acid is shown here. The plot shows how the fraction [alpha ()] of acetic acid in solution, =[CH3CO2H][CH3CO2H]+[CH3CO2] changes as the pH increases (blue curve). (The red curve shows how the fraction of acetate ion, CH3CO2, changes as the pH increases.) Alpha plots are another way of viewing the relative concentrations of acetic acid and acetate ion as a strong base is added to a solution of acetic acid in the course of a titration. (a) Explain why the fraction of acetic acid declines and that of acetate ion increases as the pH increases. (b) Which species predominates at a pH of 4, acetic acid or acetate ion? What is the situation at a pH of 6? (c) Consider the point where the two lines cross. The fraction of acetic acid in the solution is 0.5, and so is that of acetate ion. That is, the solution is half acid and half conjugate base; their concentrations are equal. At this point, the graph shows the pH is 4.74. Explain why the pH at this point is 4 74.arrow_forwardDoes the pH of the solution increase, decrease, or stay the same when you (a) Add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015-M oxalic acid? (b) Add solid ammonium chloride to 100. mL of 0.016-M HCl? (c) Add 20.0 g NaCl to 1.0 L of 0.012-M sodium acetate, NaCH3COO?arrow_forwardTwo strategies are also followed when solving for the pH of a base in water. What is the strategy for calculating the pH of a strong base in water? List the strong bases mentioned in the text that should be committed to memory. Why is calculating the pH of Ca(OH)2 solutions a little more difficult than calculating the pH of NaOH solutions? Most bases are weak bases. The presence of what element most commonly results in basic properties for an organic compound? What is present on this element in compounds that allows it to accept a proton? Table 13-3 and Appendix 5 of the text list Kb values for some weak bases. What strategy is used to solve for the pH of a weak base in water? What assumptions are made when solving for the pH of weak base solutions? If the 5% rule fails, how do you calculate the pH of a weak base in water?arrow_forward
- Phenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forwardStrong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forwardEstimate the pH that results when the following two solutions are mixed. a) 50 mL of 0.3 M CH3COOH and 50 mL of 0.4 M KOH b) 100 mL of 0.3 M CH3COOH and 50 mL of 0.4 M NaOH c) 150 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2 d) 200 mL of 0.3 M CH3COOH and 100 mL of 0.3 M Ba(OH)2arrow_forward
- This question is concerned with acid/base. The ionic product of water may be taken as 10-14 mol2dm-6. Aqueous solutions of a particular mono basic acid HX have the following pH values (see figure below). Complete the table by calculating the hydrogen ion concentration of solution B.arrow_forwardThis question is concerned with acid/base. The ionic product of water may be taken as 10-14 mol2dm-6. Aqueous solutions of a particular monobasic acid HX have the following pH values (see figure below). Concentration in moldm-3 PH Hydrogen ion concentration in moldm-3 Solution A 0.1 2.80 1.585 x 10-3 Solution B 0.001 3.85 Complete the table by calculating the hydrogen ion concentration of solution B. Write down the equation describing the dissociation of the acid HX in an aqueous solution.arrow_forwardPlease don't provide handwritten solution ....arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co