Mechanics of Materials (MindTap Course List)
9th Edition
ISBN: 9781337093347
Author: Barry J. Goodno, James M. Gere
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 10, Problem 10.4.4P
-4-4 A cantilever beam is supported at B by cable BC. The beam carries a uniform load q = 200 N/M. If the length of the beam is L = 3 m, find the force in the cable and the reactions at A. Ignore the axial flexibility of the cable.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
F3
N<
Ꮎ
2
F2
-Y
F1
There are 3 forces acting on the eye bolt.
Force F1 acts on the XY plane has a magnitude of 536 lbf,
and the angle of 0 = 38°.
Force F2 acts on the YZ plane has a magnitude of 651 lbf,
and the angle = 41°.
Force F3 has a magnitude of 256 lb, and coordinate.
=
f
direction angles of a 71°, B = 115°, and y = 33°.
Determine the resultant force on the eye bolt.
FR = (
+
k) lbf
FR magnitude:
FR coordinate direction angle a:
deg
FR coordinate direction angle ẞ`:
deg
FR coordinate direction angle y:
deg
lbf
Ball joints connect the ends of each of the struts as shown.
The resulting structure supports a force of F = 1925 N which
lies in the xz plane.
a.) Determine the angle (in degrees) between strut AD and
strut AC.
b.) Determine the dimension g such that the force Fis
→>
perpendicular to гAC.
2013 Michael Swanbom
CC
BY NC SA
B
b
C
h/
L
不
g
F
୮
d
y
LLC
Values for dimensions on the figure are given in the table
below. Note the figure may not be to scale. Be sure to align
your cartesian unit vectors with the coordinate axes shown in
the figure.
Variable Value
a
4.8 cm
b
13.4 cm
C
11.6 cm
d
10.4 cm
h
4.4 cm
k
14.8 cm
a. The angle between strut AD and strut AC is
b. The dimension g is
deg.
cm.
13
F1
35
N = 37°.
=
Determine the resultant force on the eye bolt.
FR = (
+
FR magnitude:
FR coordinate direction angle a:
deg
FR coordinate direction angle ẞ`:
Ꭱ
deg
FR coordinate direction angle y:
deg
N
k) N
Chapter 10 Solutions
Mechanics of Materials (MindTap Course List)
Ch. 10 - A propped cantilever steel beam is constructed...Ch. 10 - A fixed-end b earn is subjected to a point load at...Ch. 10 - A propped cantilever beam AB of a length L is...Ch. 10 - A fixed-end beam AB of a length L supports a...Ch. 10 - A cantilever beam AB of a length L has a fixed...Ch. 10 - A cantilever beam of a length L and loaded by a...Ch. 10 - A cantilever beam has a length L and is loaded by...Ch. 10 - A propped cantilever beam of a length L is loaded...Ch. 10 - A propped cantilever beam of a length L is loaded...Ch. 10 - A fixed-end beam of a length L is loaded by a...
Ch. 10 - A fixed-end b earn of a length L is loaded by a...Ch. 10 - A fixed-end beam of a length L is loaded by...Ch. 10 - A counterclockwise moment M0acts at the midpoint...Ch. 10 - A propped cantilever beam of a length L is loaded...Ch. 10 - A propped cantilever beam is subjected to uniform...Ch. 10 - Repeat Problem 10.3-15 using L = 3.5 m, max = 3...Ch. 10 - A two-span, continuous wood girder (E = 1700 ksi)...Ch. 10 - A fixed-end beam AB carries point load P acting at...Ch. 10 - A fixed-end beam AB supports a uniform load of...Ch. 10 - -4-4 A cantilever beam is supported at B by cable...Ch. 10 - A propped cantilever beam AB of a length L carries...Ch. 10 - A beam with a sliding support at B is loaded by a...Ch. 10 - A propped cantilever beam of a length 2L with a...Ch. 10 - The continuous frame ABC has a pin support at /l,...Ch. 10 - The continuous frame ABC has a pin support at A,...Ch. 10 - Beam AB has a pin support at A and a roller...Ch. 10 - The continuous frame ABCD has a pin support at B:...Ch. 10 - Two flat beams AB and CD, lying in horizontal...Ch. 10 - -4-13 A propped cantilever beam of a length 2L is...Ch. 10 - A propped cantilever beam of a length 2L is loaded...Ch. 10 - Determine the fixed-end moments (MAand MB) and...Ch. 10 - A continuous beam ABC wit h two unequal spans, one...Ch. 10 - Beam ABC is fixed at support A and rests (at point...Ch. 10 - A propped cantilever beam has flexural rigidity EI...Ch. 10 - A triangularly distributed 1oad with a maximum...Ch. 10 - A fixed-end beam is loaded by a uniform load q =...Ch. 10 - Uniform load q = 10 lb/ft acts over part of the...Ch. 10 - A propped cantilever beam with a length L = 4 m is...Ch. 10 - A cant i levé r b ea m i s supported by a tie rod...Ch. 10 - The figure shows a nonprismatic, propped...Ch. 10 - A beam ABC is fixed at end A and supported by beam...Ch. 10 - A three-span continuous beam A BCD with three...Ch. 10 - A beam rests on supports at A and B and is loaded...Ch. 10 - A propped cantilever beam is subjected to two...Ch. 10 - A propped cantilever beam is loaded by a...Ch. 10 - A fixed-end beam AB of a length L is subjected to...Ch. 10 - A temporary wood flume serving as a channel for...Ch. 10 - Two identical, simply supported beams AB and CD...Ch. 10 - The cantilever beam AB shown in the figure is an...Ch. 10 - The beam AB shown in the figure is simply...Ch. 10 - The continuous frame ABC has a fixed support at A,...Ch. 10 - The continuous frame ABC has a pinned support at...Ch. 10 - A wide-flange beam ABC rests on three identical...Ch. 10 - A fixed-end beam AB of a length L is subjected to...Ch. 10 - A beam supporting a uniform load of intensity q...Ch. 10 - A thin steel beam AB used in conjunction with an...Ch. 10 - Find an expression for required moment MA(in terms...Ch. 10 - Repeat Problem 10.4-41 for the loading shown in...Ch. 10 - A propped cantilever beam is loaded by two...Ch. 10 - A cable CD of a length H is attached to the third...Ch. 10 - A propped cantilever beam, fixed at the left-hand...Ch. 10 - Solve t he preceding problem by integrating the...Ch. 10 - A two-span beam with spans of lengths L and L/3 is...Ch. 10 - Solve the preceding problem by integrating the...Ch. 10 - Assume that the deflected shape of a beam AB with...Ch. 10 - (a) A simple beam AB with length L and height h...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A hollow cylinder with inner radius of 30 mm and outer radius of 50 mm is heated at the inner surface at a rate of 10^5m^2W and dissipated heat by convection from outer surface into a fluid at 80∘C with h=400 m2 KW. There is no energy generation and thermal conductivity of the material is constant at 15mKW. Calculate the temperature of inside and outside surfaces of cylinder.arrow_forwardplease read everything properly... Take 3 4 5 hrs but solve full accurate drawing on bond paper don't use chat gpt etc okkarrow_forwardSN is equivalent to 6arrow_forward
- Answer c and Darrow_forwardAnswer a and barrow_forwardAn aircraft is flying trim stick-fixed at steady level flight with a speed of 80 m/s and at standard sea level conditions, where the air density is 1.225 kg/m3 . The ratio of the wings' surface area to the tail plane’s surface area is 10, the tail arm is 10 m and the wings’ mean aerodynamic chord length is 2 m. The ratio of the tail plane’s lift to the wings’ lift is -0.01 at that condition. The rest of the known data are given in the two tables at the end of the question. Justify any assumption that you make. a) Calculate the total lift and tail plane lift coefficients, the wings’ load and Calculate the down-wash angle and the tail plane angle of attackarrow_forward
- Answer a and barrow_forwardCơ cấu tạo hình được thiết kế để tạo ra hành trình cắt chậm và quay trở lại nhanh chóng với lưỡi gắn với con trượt tại C. Xác định vận tốc của khối con trượt C tại thời điểm 0=60° nếu liên kết AB đang quay với vận tốc góc 4 rad/s. 45° A. V 1.74(m/s) B. Vc=1.84(m/s) C. Vc = 1.24(m/s) D. Vc=1.64(m/s) 125 mm B = WAB 4 rad/s 300 mm Aarrow_forwardplease help solvearrow_forward
- please help solvearrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m₂ = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. www.m k₁ = 3 (y₁ = 0). m₁ = 1 k2=2 (y₂ = 0) |m₂ = 1 Y2 y 2 System in static equilibrium (Net change in spring length =32-31) System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁(t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations)arrow_forwardTwo large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min B y(t) 100 L y(0) = 20 kg 2 L/min 1 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t > 0: Analytically (hand calculations)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY