Concept explainers
A propped cantilever steel beam is constructed from a W12 × 35 section. The beam is loaded by its self-weight with intensity q. The length of the beam is 1L5 ft. Let E = 30,000 ksi.
- Calculate the reactions at joints A and B.
a.
The reaction at joint A and B.
Answer to Problem 10.3.1P
Explanation of Solution
Given information:
The first step is to consider the equilibrium condition of the entire beam, express the other two reaction in term of
We have,
Bending moment,
Consider a distance x away from the fixed support.
On substituting the values,
The second order of differential equation of deflection curve becomes,
On two successive integrations, we obtain the equation of slope and deflection:
Slope:
Deflection:
These equations contain three unknown quantities:
Applying boundary conditions,
b.
The location of zero moment within span AB.
Answer to Problem 10.3.1P
Explanation of Solution
X zero means, the position at which the value of bending moment is zero.
The bending moment is zero at:
c.
The maximum deflection of beam and the rotation at joint B.
Answer to Problem 10.3.1P
Explanation of Solution
Given information:
Maximum deflection:
Rotation at joint B,
Want to see more full solutions like this?
Chapter 10 Solutions
Bundle: Mechanics Of Materials, Loose-leaf Version, 9th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
- A beam rests on supports at A and B and is loaded by a distributed load with intensity q as shown. A small gap exists between the unloaded beam and the support at C. Assume that span length L = 40 in. and flexural rigidity of the beam EI = 04 x 109lb-in2. Plot a graph of the bending moment at B as a function of the load intensity q. Hint: See Example 9-9 for guidance on computing the deflection at C.arrow_forwardA fixed-end beam AB of a length L is subjected to a uniform load of intensity q acting over the middle region of the beam (sec figure). Obtain a formula for the fixed-end moments MAand MBin terms of the load q, the length L, and the length h of the loaded part of the beam. Plot a graph of the fixed-end moment MAversus the length b of the loaded part of the beam. For convenience, plot the graph in the following nondimensional form: MAqL2/l2versusbL with the ratio b/L varying between its extreme values of 0 and 1. (c) For the special case in which ù = h = L/3, draw the shear-force and bending-moment diagrams for the beam, labeling all critical ordinates.arrow_forwardThe cantilever beam ACE shown in the figure has FlexuraI rigidity EI = 2,1 x 106kip-in". Calculate the downward deflections Scand 8Sat points C and B, respectively, due to the simultaneous action of the moment of 35 kip-in. applied at point C and the concentrated load of 2,5 kips applied at the free end B.arrow_forward
- A fixed-end beam AB carries point load P acting at point C. The beam has a rectangular cross section (b = 75 mm, h = 150 mm). Calculate the reactions of the beam and the displacement at point C. Assume that E = 190 GPa.arrow_forwardA wide-flange beam (W 12 x 35) supports a uniform load on a simple span of length L = 14 ft (see figure). Calculate the maximum deflection max at the midpoint and the angles of rotation Sat the supports if q = 1.8 kips/ft and E = 30 × 106 psi. (Use the formulas of Example 9-1.)arrow_forwardA fixed-end beam is loaded by a uniform load q = 15 kN/m and a point load P = 30 kN at mid-span. The beam has a length of 4 m and modulus of elasticity of 205 GPa. Find reactions at A and B. Calculate the height of the beam if the displacement at mid-span is known to be 3 mm. Assume that the beam has rectangular cross section with h/b = 2.arrow_forward
- A uniformly loaded, steel wide-flange beam with simple supports (see figure) has a downward deflection of 10 mm at the midpoint and angles of rotation equal to 0.01 radians at the ends. Calculate the height h of the beam if the maximum bending stress is 90 MPa and the modulus of elasticity is 200 GPa, (Use the formulas of Example 9-L)arrow_forwardBeam ACB hangs from two springs, as shown in the figure. The springs have stiffnesses Jt(and k2^ and the beam has flexural rigidity EI. What is the downward displacement of point C, which is at the midpoint of the beam, when the moment MQis applied? Data for the structure are M0 = 7.5 kip-ft, L = 6 ft, EI = 520 kip-ft2, kx= 17 kip/ft, and As = 11 kip/ft. Repeat part (a), but remove Af0 and instead apply uniform load q over the entire beam.arrow_forward-3 The deflection curve for a simple beam AB (see figure) is given by v=q0x360LEI(7L410L2x2+3x4) Describe the load acting on the beam.arrow_forward
- Beam ACE hangs from two springs, as shown in the figure. The springs have stiffnesses kxand k2and the beam has flex lira I rigidity EL (a) What is the downward displacement of point C, which is at the midpoint of the beam, when the moment M0 is applied? Data for the structure are as follows: M0= 10,0 kN m, L = 1.8 m, EI = 216 kN m2, Jt, = 250 kN/m, and k2= 160 kN/m, (b) Repeat part (a), but remove A/() and apply a uniform load q — 3.5 kN/m to the entire beam.arrow_forwardA beam A BCD rests on simple supports at B and C (see figure). The beam has a slight initial curvature so that end A is 18 mm above the elevation of the supports and end D is 12 mm above. What moments Mtand M^, acting at points A and Dtrespectively, will move points A and D downward to the level of the supports? (The flexural rigidity EI of the beam is 2.5 X 106 N m2 and L = 2.5m).arrow_forwardCopper beam AB has circular cross section with a radius of 0.25 in. and length L = 3 ft. The beam is subjected to a uniformly distributed load w = 3.5 lb/ft. Calculate the required load P at joint B so that the total deflection at joint B is zero. Assume that£ = 16,000 ksi.arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning