Interpretation:
Table 1.5 is to be used to list the gases from most ideal to least ideal. The trend or trends obvious from this list are to be found out.
Concept introduction:
An ideal gas is denoted as the one in which there are no intermolecular attractive forces or repulsive forces and in which all collisions between the particles such as atoms or molecules are superlatively elastic. Besides, ideals gases can be visualized as a group of perfectly hard spheres which can collide with each other, but which otherwise will not interact with each other. In contrast, real gases are non-hypothetical gases and its molecules can occupy space and have interactions with each other by adhering the

Answer to Problem 1.42E
The gases can be listed as most ideal to least ideal as follows;
The gases are arranged based on increasing trend of their Boyle temperature.
Explanation of Solution
An ideal gas is denoted as the one in which there are no intermolecular attractive forces or repulsive forces and in which all collisions between the particles such as atoms or molecules are superlatively elastic. Besides, ideals gases can be visualized as a group of perfectly hard spheres which can collide with each other, but which otherwise will not interact with each other. At STP most real gases behave like an ideal gas such as nitrogen, hydrogen, oxygen, noble gases, carbon dioxide. The term ideal is applicable for gas at higher temperature and lower pressure. In these conditions the potential energy due to intermolecular forces becomes less important as compared with the particle’s kinetic energy. Besides, the size of the gas molecules is less significant as compared to the empty space between them. Thus, one mole of an ideal occupies a volume of
The main drawback of ideal gas it is unsuccessful at lower temperatures or higher pressures, where intermolecular forces and molecular size of gases plays a significant role. Importantly, it fails for most heavy gases (ex: refrigerants) and gases having strong intermolecular forces (ex: water vapor) and ideal gas does not elucidate phase transitions. Thus, the deviations from the ideal gas behavior can be best described by the ‘compressibility factor Z’. The ideal gas equation is
In contrast, real gases are non-hypothetical gases and its molecules can occupy space and have interactions with each other by adhering the gas laws. Under most conditions, they gas going with low temperatures and high pressures are called non-ideal gases. In terms of volume, the compressibility of non-ideal gases can be written as;
In terms of volume, the compressibility of non-ideal gas is expressed as
Where B, C, D virial coefficient and the equation is called virial equation of state.
The temperature at which the virial coefficient B becomes zero is called Boyle temperature.
a and b are van der Waals constant. This Boyle temperature is used to arrange the gases based on ideal to non-ideal behavior. The order of gases are as follows;
At lower ideality values the gases behaves as ideal gas and undergoes various reactions that an ideal gas will undergo.
Thus, Table 1.5 is used to list the gases from most ideal to least ideal. The trend or trends obvious from this list are found out.
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Problem 6-29 Identify the functional groups in the following molecules, and show the polarity of each: (a) CH3CH2C=N CH, CH, COCH (c) CH3CCH2COCH3 NH2 (e) OCH3 (b) (d) O Problem 6-30 Identify the following reactions as additions, eliminations, substitutions, or rearrangements: (a) CH3CH2Br + NaCN CH3CH2CN ( + NaBr) Acid -OH (+ H2O) catalyst (b) + (c) Heat NO2 Light + 02N-NO2 (+ HNO2) (d)arrow_forwardPredict the organic product of Y that is formed in the reaction below, and draw the skeletal ("line") structures of the missing organic product. Please include all steps & drawings & explanations.arrow_forwardPlease choose the best reagents to complete the following reactionarrow_forward
- Problem 6-17 Look at the following energy diagram: Energy Reaction progress (a) Is AG for the reaction positive or negative? Label it on the diagram. (b) How many steps are involved in the reaction? (c) How many transition states are there? Label them on the diagram. Problem 6-19 What is the difference between a transition state and an intermediate? Problem 6-21 Draw an energy diagram for a two-step reaction with Keq > 1. Label the overall AG°, transition states, and intermediate. Is AG° positive or negative? Problem 6-23 Draw an energy diagram for a reaction with Keq = 1. What is the value of AG° in this reaction?arrow_forwardProblem 6-37 Draw the different monochlorinated constitutional isomers you would obtain by the radical chlorination of the following compounds. (b) (c) Problem 6-39 Show the structure of the carbocation that would result when each of the following alkenes reacts with an acid, H+. (a) (b) (c)arrow_forwardPlease draw the major product of this reaction. Ignore inorganic byproducts and the carboxylic side productarrow_forward
- predict the product formed by the reaction of one mole each of cyclohex-2-en-1-one and lithium diethylcuprate. Assume a hydrolysis step follows the additionarrow_forwardPlease handwriting for questions 1 and 3arrow_forwardIs (CH3)3NHBr an acidic or basic salt? What happens when dissolved in aqueous solution? Doesn't it lose a Br-? Does it interact with the water? Please advise.arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER





