(a)
Interpretation:
The value of the compressibility factor for an ideal gas is to be stated.
Concept introduction:
The

Answer to Problem 1.36E
The ideal gas equation is
Explanation of Solution
In many circumstances such as at low temperature and high pressures the gases deviate from the ideal gas equation.
The equation (1) can be written for non-ideality with correction as,
Where,
P = Pressure
Z = Compressibility factor
R = Universal gas constant
T = Temperature
Therefore, the compressibility factor can be written as,
This is simplest form of equation of state of real gas. The key factor of equation (3) is that the compressibility factor, Z, is not a constant. Basically, the value of ‘Z’ varies from one gas to another gas as well as varies with the pressure and temperature of the gas under consideration. Thus, it should be evaluated experimentally. The plot of ‘Z’ versus pressure at constant temperature of plot of ‘Z’ versus pressure at varying temperatures gives the readily obtaining interpolated values of ‘Z’ between the experimentally determined values.
The compressibility factor ‘Z’ can be expressed in another form as,
The factors affecting the compressibility values are;
1. When the gas pressure approaches 0, the value of Z tends toward 1. In this case all gases show ideal behavior.
2. When the gas pressure is at intermediate level, the value of Z is less than 1. In this case actual volumes to be less than the ideal values due to intermolecular forces of attraction.
3. When the gas pressure is high, the value of Z is greater than 1 and tends toward infinity. In this case the actual volumes to be greater than the ideal values due to intermolecular repulsive forces.
Thus, the value of the compressibility factor for an ideal gas is stated.
(b)
Interpretation:
‘The value varies with
Concept introduction:
The ideal

Answer to Problem 1.36E
Since, the compressibility factor Z is having the variables p, V, and T, its value will certainly vary with the terms of p, V, and T. Generally, the farther the value of Z is from ‘one’ the gas behaves less ideally.
Explanation of Solution
In many circumstances such as at low temperature and high pressures the gases deviate from the ideal gas equation
The equation (1) can be written for non-ideality with correction as,
Where,
P = Pressure
Z = Compressibility factor
R = Universal gas constant
T = Temperature
Therefore, the compressibility factor can be written as,
This is simplest form of equation of state of real gas. The key factor of equation (3) is that the compressibility factor, Z, is not a constant. Basically, the value of ‘Z’ varies from one gas to another gas as well as varies with the pressure and temperature of the gas under consideration. Thus, it should be evaluated experimentally. The plot of ‘Z’ versus pressure at constant temperature of plot of ‘Z’ versus pressure at varying temperatures gives the readily obtaining interpolated values of ‘Z’ between the experimentally determined values.
The compressibility factor ‘Z’ can be expressed in another form as,
The factors affecting the compressibility values are;
1. When the gas pressure approaches 0, the value of Z tends toward 1. In this case all gases show ideal behavior.
2. When the gas pressure is at intermediate level, the value of Z is less than 1. In this case actual volumes to be less than the ideal values due to intermolecular forces of attraction.
3. When the gas pressure is high, the value of Z is greater than 1 and tends toward infinity. In this case the actual volumes to be greater than the ideal values due to intermolecular repulsive forces.
Thus, ‘The value varies with
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Which of the following molecules are NOT typical carbohydrates? For the molecules that are carbohydrates, label them as an aldose or ketose. HO Он ОН ОН Он ОН но ΤΗ HO ОН HO eve Он он ОН ОН ОН If polyethylene has an average molecular weight of 25,000 g/mol, how many repeat units are present?arrow_forwardDraw the a-anomer cyclized pyranose Haworth projection of the below hexose. Circle the anomeric carbons. Number the carbons on the Fischer and Haworth projections. Assign R and S for each chiral center. HO CHO -H HO -H H- -OH H -OH CH₂OH Draw the ẞ-anomer cyclized furanose Haworth projection for the below hexose. Circle the anomeric carbons. Number the carbons on the Fischer and Haworth projections. HO CHO -H H -OH HO -H H -OH CH₂OHarrow_forwardName the below disaccharide. Circle any hemiacetals. Identify the numbering of glycosidic linkage, and identify it as a or ẞ. OH HO HO OH HO HO HO OHarrow_forward
- What are the monomers used to make the following polymers? F. а. b. с. d. Вецер хочому なarrow_forward1. Propose a reasonable mechanism for the following transformation. I'm looking for curved mechanistic arrows and appropriate formal charges on intermediates. OMe MeO OMe Me2N NMe2 OTBS OH xylenes OMe 'OTBSarrow_forwardWhat is the polymer made from the following monomers? What type of polymerization is used for each? а. ОН H2N но b. ن -NH2 d. H₂N NH2 довarrow_forward
- Condensation polymers are produced when monomers containing two different functional groups link together with the loss of a small molecule such as H2O. The difunctional monomer H2N(CH2)6COOH forms a condensation polymer. Draw the carbon-skeleton structure of the dimer that forms from this monomer.arrow_forwardWhat is the structure of the monomer?arrow_forward→ BINDERIYA GANBO... BINDERIYA GANBO. AP Biology Notes Gamino acid chart - G... 36:22 司 10 ☐ Mark for Review Q 1 Hide 80 8 2 =HA O=A¯ = H₂O Acid HIO HBrO HCIO Question 10 of 35 ^ Σ DELL □ 3 % Λ & 6 7 * ∞ 8 do 5 $ 4 # m 3 ° ( 9 Highlights & Notes AXC Sign out Carrow_forward
- Which representation(s) show polymer structures that are likely to result in rigid, hard materials and those that are likely to result in flexible, stretchable, soft materials?arrow_forward3. Enter the molecular weight of the product obtained from the Williamson Ether Synthesis? OH OH & OH excess CH3l Ag₂Oarrow_forwardPlease answer 1, 2 and 3 on the endarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning


