Numerically evaluate for one mole of methane acting as a van der Waals gas at (a) T = 298 K and V = 25.0 L and (b) T = 1000 K and V = 250.0 L. Comment on which set of conditions yields a number closer to that predicted by the
![Check Mark](/static/check-mark.png)
(a)
Interpretation:
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.51E
Explanation of Solution
The ideal gas equation can be represented as;
PV = nRT …(1)
Notably, the van Waals equation improves the ideal gas law by adding two significant terms in the ideal gas equation: one term is to account for the volume of the gas molecules and another term is introduced for the attractive forces between them. The non-ideal gas equation represented as;
In the above equation,
‘a’ and ‘b’ are called as van der Waals constants
Rearranging equation (2) we get pressure p of real gas as,
On differentiation with respect to volume V, at constant T, n we get
Given for methane,
Number of moles = n = 1 mole
Temperature of gas = T = 298 K
Volume of gas = V = 25.0 L
Value of constant ‘a’ for methane = 2.253atmL2/mol2
Value of constant ‘b’ for methane = 0.0428 L/mol
Substituting the values in equation (4), we get,
Besides, differentiating the equation (1) for ideal gas with respect to volume V, we get
Substituting the given parameters for methane in equation (5), we get for ideal gas
25.0 L is calculated as -0.0395 atm/L
![Check Mark](/static/check-mark.png)
(b)
Interpretation:
T = 1000 K and V = 250.0 L.
Concept introduction:
The ideal gas law considered the molecules of a gas as point particles with perfectly elastic collisions among them in nature. Thus, a modification of the ideal gas equation was coined by Johannes D. van der Waals in 1873 to consider size of molecules and the interaction forces among them. It is generally denoted as the van der Waals equation of state.
Answer to Problem 1.51E
250.0 L is calculated as -0.0013 atm/L
Explanation of Solution
The ideal gas equation can be represented as;
PV = nRT … (1)
The non-ideal gas equation represented as;
In the above equation,
‘a’ and ‘b’ are called as van der Waals constants.
Rearranging equation (2) we get pressure P of real gas as,
On differentiation with respect to volume V, at constant T, n we get
Given for methane,
Number of moles = n = 1 mole
Temperature of gas = T = 1000 K
Volume of gas = V = 250.0 L
Value of constant ‘a’ for methane = 2.253atmL2/mol2
Value of constant ‘b’ for methane = 0.0428 L/mol
Substituting the values in equation (4), we get,
Besides, differentiating the equation (1) for ideal gas with respect to volume V, we get
Substituting the given parameters for methane in equation (5), we get for ideal gas,
Non-ideal gas value is in close proximity to ideal gas values.
Want to see more full solutions like this?
Chapter 1 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Transmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forwardNonearrow_forwardDraw the Lewis structure of C2H4Oarrow_forward
- a) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forwardDr. Mendel asked his BIOL 260 class what their height was and what their parent's heights were. He plotted that data in the graph below to determine if height was a heritable trait. A. Is height a heritable trait? If yes, what is the heritability value? (2 pts) B. If the phenotypic variation is 30, what is the variation due to additive alleles? (2 pts) Offspring Height (Inches) 75 67.5 60 52.5 y = 0.9264x + 4.8519 55 60 65 MidParent Height (Inches) 70 75 12pt v V Paragraph B IUA > AT2 v Varrow_forward
- Experiment: Each team will be provided with 5g of a mixture of acetanilide and salicylic acid. You will divide it into three 1.5 g portions in separate 125 mL Erlenmeyer flasks savıng some for melting point analysis. Dissolve the mixture in each flask in ~60mL of DI water by heating to boiling on a hotplate. Take the flasks off the hotplate once you have a clear solution and let them stand on the bench top for 5 mins and then allow them to cool as described below. Sample A-Let the first sample cool slowly to room temperature by letting it stand on your lab bench, with occasional stirring to promote crystallization. Sample B-Cool the second sample 1n a tap-water bath to 10-15 °C Sample C-Cool the third sample in an ice-bath to 0-2 °C Results: weight after recrystalization and melting point temp. A=0.624g,102-115° B=0.765g, 80-105° C=1.135g, 77-108 What is the percent yield of A,B, and C.arrow_forwardRel. Intensity Q 1. Which one of the following is true of the compound whose mass spectrum is shown here? Explain how you decided. 100 a) It contains chlorine. b) It contains bromine. c) It contains neither chlorine nor bromine. 80- 60- 40- 20- 0.0 0.0 TT 40 80 120 160 m/z 2. Using the Table of IR Absorptions how could you distinguish between these two compounds in the IR? What absorbance would one compound have that the other compound does not? HO CIarrow_forwardIllustrate reaction mechanisms of alkenes with water in the presence of H2SO4, detailing each step of the process. Please show steps of processing. Please do both, I will thumb up for sure #1 #3arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)