(a)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (a) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(b)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (b) 500 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)
(c)
Interpretation:
The ratio of the populations of two energy states whose energies differ by 500 J at (c) 200 K and the trend is to be calculated.
Concept introduction:
From kinetic theory of gases, we know that the average kinetic energy of a ideal gas molecule is given by ½ kT for each degree of translation freedom. In this equation k is given as Boltzmann constant and T is given as absolute temperature (in K). Boltzmann effectively utilized this concept to derive a relationship as the natural logarithm of the ratio of the number of particles in two energy states is directly proportional to the negative of their energy separation. Thus, the Boltzmann distribution law is given as,
Probability = e –(ΔE/RT)

Trending nowThis is a popular solution!

Chapter 1 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Choose the best reagents to complete the following reaction. i H A B 1. CH3CH2Na 2. H3O+ 1. CH3CH2MgBr 2. H3O+ 1. CH3MgBr Q C 2. H3O+ 1. H3O+ D 2. CH3MgBr 00 OH Q E CH³MgBrarrow_forwardThe kinetics of a gas phase reaction of the form A → Products results in a rate constant of 0.00781 M/min. For this reaction, the initial concentration of A is 0.501 M. What is the half-life for this reaction?arrow_forwardChoose the best reagents to complete the following reaction. 1. PhNa A 2. H3O+ 1. PhCH2MgBr B 2. H3O+ хё 1. PhMgBr C 2. H3O+ 00 HO Q E D 1. H3O+ 2. PhMgBr PhMgBrarrow_forward
- Please answer all of the questions and provide detailed explanations and include a drawing to show the different signals on the molecule and include which ones should be highlighted.arrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Incorrect, 1 attempt remaining 1. LiAlH4 2. H3O+ Q OH ☑ Select to Drawarrow_forwardHow should I graph my data for the Absorbance of Pb and Fe for each mushroom? I want to compare the results to the known standard curve. Software: Excel Spreadsheets Link: https://mnscu-my.sharepoint.com/:x:/g/personal/vi2163ss_go_minnstate_edu/Eb2PfHdfEtBJiWh0ipHZ_kkBW4idWWwvpLPPtqoq2WkgbQ?rtime=HxrF0_tR3Ugarrow_forward
- Provide the proper IUPAC name only for the following compound. Dashes, commas, and spaces must be used correctly, but do not use italics in Canvas.arrow_forwardThe kinetics of a gas phase reaction of the form A → Products results in a rate constant of 0.00781 M/min. For this reaction, the initial concentration of A is 0.501 M. How many minutes will it take for the concentration of A to reach 0.144 Marrow_forwardWhat is the rate for the second order reaction A → Products when [A] = 0.256 M? (k = 0.761 M⁻¹s⁻¹)arrow_forward
- For reaction N2(g) + O2(g) --> 2NO(g) Write the rate of the reaction in terms of change of NO.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardThe reaction of 2-oxacyclopentanone with hydrochloric acid in water (i.e., "excess") produces which of the following carboxylic acids?arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





