Concept explainers
(a)
Interpretation:
The physical state of air in the room is to be determined.
Concept introduction:
Anything that has mass and volume is defined as a matter. The matter is classified as solids, liquids, and gases on the basis of a state that depends on the physical form of matter.
In solids, the atoms and molecules have fixed positions and are closely packed to each other. The atoms and molecules in the solid state only vibrate and do not move over each other. Therefore, a solid has a rigid shape and fixed volume. The examples of matter that are solid are ice and diamond.
In liquids, atoms and molecules are also closely packed to each other but they can move over each other. Thus, liquids have fixed volume but they do not have a fixed shape. Liquids occupy the shape of the container. The examples of matter that are liquid are water and alcohol.
In gases, the atoms and molecules have space between them and can easily move over each other hence gases are compressible. Gases neither have fixed shape nor volume. It occupies the shape and volume of the container. The examples of matter that are gases are nitrogen and carbon dioxide.
(b)
Interpretation:
The physical state of tablets in a bottle of vitamins is to be determined.
Concept introduction:
Anything that has mass and volume is defined as a matter. The matter is classified as solids, liquids, and gases on the basis of a state that depends on the physical form of matter.
In solids, the atoms and molecules have fixed positions and are closely packed to each other. The atoms and molecules in the solid state only vibrate and do not move over each other. Therefore, a solid has a rigid shape and fixed volume. The examples of matter that are solid are ice and diamond.
In liquids, atoms and molecules are also closely packed to each other but they can move over each other. Thus, liquids have fixed volume but they do not have a fixed shape. Liquids occupy the shape of the container. The examples of matter that are liquid are water and alcohol.
In gases, the atoms and molecules have space between them and can easily move over each other hence gases are compressible. Gases neither have fixed shape nor volume. It occupies the shape and volume of the container. The examples of matter that are gases are nitrogen and carbon dioxide.
(c)
Interpretation:
The physical state of sugar in a packet is to be determined.
Concept introduction:
Anything that has mass and volume is defined as a matter. The matter is classified as solids, liquids, and gases on the basis of a state that depends on the physical form of matter.
In solids, the atoms and molecules have fixed positions and are closely packed to each other. The atoms and molecules in the solid state only vibrate and do not move over each other. Therefore, a solid has a rigid shape and fixed volume. The examples of matter that are solid are ice and diamond.
In liquids, atoms and molecules are also closely packed to each other but they can move over each other. Thus, liquids have fixed volume but they do not have a fixed shape. Liquids occupy the shape of the container. The examples of matter that are liquid are water and alcohol.
In gases, the atoms and molecules have space between them and can easily move over each other hence gases are compressible. Gases neither have fixed shape nor volume. It occupies the shape and volume of the container. The examples of matter that are gases are nitrogen and carbon dioxide.
Want to see the full answer?
Check out a sample textbook solutionChapter 1 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Briefly indicate the structure and bonding of silicates.arrow_forward4 Part C Give the IUPAC name and a common name for the following ether: Spell out the full names of the compound in the indicated order separated by a comma.arrow_forwardTry: Draw possible resonance contributing structures for the following organic species: CH3CH2NO2 [CH2CHCH2] [CH2CHCHO] [CH2CHCH2] [CH2CHNH2]arrow_forward
- Complete the following synthesis. (d). H+ ง сarrow_forwardCan the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material? If yes, draw the synthesis. Include all steps and all reactants.arrow_forwardThis is a synthesis question. Why is this method wrong or worse than the "correct" method? You could do it thiss way, couldn't you?arrow_forward
- Try: Draw the best Lewis structure showing all non-bonding electrons and all formal charges if any: (CH3)3CCNO NCO- HN3 [CH3OH2]*arrow_forwardWhat are the major products of the following reaction? Draw all the major products. If there are no major products, then there is no reaction that will take place. Use wedge and dash bonds when necessary.arrow_forwardZeolites. State their composition and structure. Give an example.arrow_forward
- Don't used hand raiting and show all reactionsarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardIX) By writing the appropriate electron configurations and orbital box diagrams briefly EXPLAIN in your own words each one of the following questions: a) The bond length of the Br2 molecule is 2.28 Å, while the bond length of the compound KBr is 3.34 Å. The radius of K✶ is 1.52 Å. Determine the atomic radius in Å of the bromine atom and of the bromide ion. Br = Br b) Explain why there is a large difference in the atomic sizes or radius of the two (Br and Br). Tarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY