
Concept explainers
(a)
Interpretation:
The following calculation is to be solved to the correct number of significant figures.
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit. The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps is followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
Rules to determine significant figures in calculations are as follows:
(1) In multiplication and division operations the result carries the same number of significant figures as the operand or measurement with the fewest significant figures.
(2) In addition and subtraction operations, the result carries the same number of decimal places as the operand or measurement with fewest decimal places.
(3) Exact numbers do not affect the number of significant digits in the final answer.
In mathematical expression which involves mixed operations the result of each intermediate step with proper significant figures. Avoid rounding of the result at intermediate steps. Round off the final answer of the calculation. The rules to round off are as follows:
(1) If the last dropped digit is greater than 5 then increase the preceding digit by 1.
(2) If the last dropped digit is less than 5 then the preceding digit does not change.
(3) If the last digit dropped is 5, then the preceding digit is increased by 1 if it is odd and remains the same if it is even. Also, if 5 is followed by zeroes only then rule (3) is applicable and if it is followed by non-zero digit then rule (1) is applicable.
(a)

Answer to Problem 1.59P
The answer of the calculation to a correct number of significant figures is
Explanation of Solution
The given expression is,
The least significant digit in each number is underlined as follows:
Add
The result of the addition operation must carry the same number of decimal places as the measurement with fewest decimal places. Measurement
Divide
The result of the division operation must carry the same number of significant figures as the measurement with the fewest significant figures.
The last digit to be dropped is 5 and the preceding digit is odd thus it is increased by 1.
The final answer is rounded off to 2 significant figures. The answer of the calculation to a correct number of significant figures is
(b)
Interpretation:
The following calculation is to be solved to the correct number of significant figures.
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.
The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps is followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
Rules to determine significant figures in calculations are as follows:
(1) In multiplication and division operations the result carries the same number of significant figures as the operand or measurement with the fewest significant figures.
(2) In addition and subtraction operations, the result carries the same number of decimal places as the operand or measurement with fewest decimal places.
(3) Exact numbers do not affect the number of significant digits in the final answer.
In mathematical expression which involves mixed operations the result of each intermediate step with proper significant figures. Avoid rounding of the result at intermediate steps. Round off the final answer of the calculation. The rules to round off are as follows:
(1) If the last dropped digit is greater than 5 then increase the preceding digit by 1.
(2) If the last dropped digit is less than 5 then the preceding digit does not change.
(3) If the last digit dropped is 5, then the preceding digit is increased by 1 if it is odd and remains the same if it is even. Also, if 5 is followed by zeroes only then rule (3) is applicable and if it is followed by non-zero digit then rule (1) is applicable.
(b)

Answer to Problem 1.59P
The answer of the calculation to a correct number of significant figures is
Explanation of Solution
The given expression is,
The least significant digit in each number is underlined as follows:
Subtract
The result of the subtraction operation must carry the same number of decimal places as the measurement with fewest decimal places. Measurement
Divide
The result of the division operation must carry the same number of significant figures as the measurement with the fewest significant figures.
The final answer is rounded off to 2 significant figures. The answer of the calculation to a correct number of significant figures is
(c)
Interpretation:
The following calculation is to be solved to the correct number of significant figures.
Concept introduction:
Significant figures of a number are the digits which carry meaningful contribution to its measurement resolution. The rightmost digit of the quantity is the most uncertain digit.
The number of certain and uncertain digit in a quantity is considered as significant figures. The digit with a higher number of significant figures has a higher certainty of measurement.
To determine the number of significant figures in a quantity following steps is followed.
1. The quantity must has a decimal point.
2. Start counting from the left and proceed towards the right until the first nonzero digit is encountered. All nonzero digit and the zeroes between two nonzero digits are considered as significant figures. For example, 0.0000765 has three significant figures and 7009 has four significant figures.
3. Zeroes after a decimal point are significant figures. For example, 42.0 have three significant figures.
4. Trailing zeroes that do nothing but are used to set a decimal point are non-significant figures. However, exponential notation can be used to avoid confusion. For example, 4300 has 3 significant figures. It can be expressed in scientific notation as
5. Zeroes present before a trailing decimal point are significant figures. For example, 3200 has only two significant figures but 3200. has 4 significant figures.
Rules to determine significant figures in calculations are as follows:
(1) In multiplication and division operations the result carries the same number of significant figures as the operand or measurement with the fewest significant figures.
(2) In addition and subtraction operations, the result carries the same number of decimal places as the operand or measurement with fewest decimal places.
(3) Exact numbers do not affect the number of significant digits in the final answer.
In mathematical expression which involves mixed operations the result of each intermediate step with proper significant figures. Avoid rounding of the result at intermediate steps. Round off the final answer of the calculation. The rules to round off are as follows:
(1) If the last dropped digit is greater than 5 then increase the preceding digit by 1.
(2) If the last dropped digit is less than 5 then the preceding digit does not change.
(3) If the last digit dropped is 5, then the preceding digit is increased by 1 if it is odd and remains the same if it is even. Also, if 5 is followed by zeroes only then rule (3) is applicable and if it is followed by non-zero digit then rule (1) is applicable.
(c)

Answer to Problem 1.59P
The answer of the calculation to a correct number of significant figures is
Explanation of Solution
The value of
The formula to calculate the volume is,
Substitute
The result of the multiplication and division operation must carry the same number of significant figures as the measurement with the fewest significant figures.
The final answer is rounded off to 3 significant figures. The answer of the calculation to a correct number of significant figures is
Want to see more full solutions like this?
Chapter 1 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Indicate the products of the reaction between CH3COCH2COONa (Sodium acetoacetate) and BrCH2COOC2H5arrow_forwardIndicate whether the product of the reaction between Naphthalene and CrO3 in acetic acid at 25ºC is 1,4 naphthoquinone or phthalic anhydride.arrow_forwardIndicate the products of the reaction between CH3COCH2COOC2H5 and Na+-OC2H5.arrow_forward
- Primary, Secondary, and Tertiary Alcohols O-H O-H O-H R₁-C-H R₁-C-H R₁-C-R₁ H R₂ R₂ Primary Alcohol Secondary Alcohol ChemistryLearner.com R stands for Carbon group like ethyl methyl propyl Tertiary Alcohol If 1 carbon group with two H attached to alcoholic carbon, then primary If 2 carbon group and 1 H are attached to alcoholic carbon, then secondary IF 3 carbon group and no H attach to alcoholic carbon then tertiary. The bottom line Starting "Weak" oxidant material PCC, DMP, Swern, etc Primary alcohol Aldehyde OH Secondary alcohol Ketone OH "Strong" oxidant KMnO4, H₂CrO4 (or equivalent) OH Carboxylic acid 요 Ketone No reaction No reaction Tertiary alcohol 1. Is ethanol a primary, secondary, or tertiary alcohol? Write out the structures of ethanol and any oxidation products of ethanol. If there is more than one oxidation product, give the structure of each of the products. 2. Is 2-propanol a primary, secondary, or tertiary alcohol? Write out the structures of 2-propanol and any…arrow_forwardFormulate the reaction: Naphthalene with CrO3 in acetic acid at 25ºCarrow_forwardComplete the reaction hand written pleasearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





