Theory and Design for Mechanical Measurements
6th Edition
ISBN: 9781118881279
Author: Richard S. Figliola, Donald E. Beasley
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.23P
Using either the ASME 19.5 or ISO 5167 test standard, explain how to use a venturi flowmeter. What are the independent variable(s) and dependent variable(s) in engineering practice? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The actual value of pressure differential for flow across a venturimeter is 60 mm WC. The measured values using a pressure sensor are; Confidence level 95% mm WC 59.8,59.2,59.7,60.2,60.3,60.1,60.5
Estimate
Bias uncertainty (1)
Precision uncertainty (2)
Total uncertainty (3)
A temperature measurement system has the following specifications:
-128 to 781°C
Range
Linearity error
0.29% FSO
Hysteresis error
0.12% FSO
Sensitivity error
0.04% FSO
Zero drift
0.32% FSO
FSO stands for "Full Scale Output". Estimate the overall instrument
uncertainty for this system based on the available information. Use the
maximum possible output range over the FSO in your computations.
"The temperature of an ice bath is measured numerous times with a digital thermometer. The true temperature of the ice bath is 0.07202C. The sample mean temperature is T = -0.0008C. The sample standard deviation of all the readings is 0.02529C. We assume that the precision errors in the readings are purely random. In the standard engineering format, calculate the tolerance for 95%."
Chapter 1 Solutions
Theory and Design for Mechanical Measurements
Ch. 1 - Prob. 1.1PCh. 1 - Prob. 1.2PCh. 1 - Prob. 1.3PCh. 1 - Prob. 1.4PCh. 1 - Prob. 1.5PCh. 1 - Discuss how the resolution of the display scale of...Ch. 1 - Prob. 1.7PCh. 1 - Prob. 1.8PCh. 1 - Prob. 1.9PCh. 1 - Prob. 1.10P
Ch. 1 - State the purpose of using randomization methods...Ch. 1 - Provide an example of repetition and replication...Ch. 1 - Develop a test plan that might be used to estimate...Ch. 1 - Develop a test plan that might be used to evaluate...Ch. 1 - A race engine shop has just completed two engines...Ch. 1 - A thermodynamics model assumes that a particular...Ch. 1 - Regarding the Mars Climate Orbiter spacecraft...Ch. 1 - A large batch of carefully made machine shafts can...Ch. 1 - Suggest an approach or approaches to estimate the...Ch. 1 - Suggest a test matrix to evaluate the wear...Ch. 1 - Figure 1.15 Orifice flow meter setup used for...Ch. 1 - The sale of motor fuel is an essential business in...Ch. 1 - Using either the ASME 19.5 or ISO 5167 test...Ch. 1 - A simple thermocouple circuit is formed using two...Ch. 1 - 1.25 A linear variable displacement transducer...Ch. 1 - For the LVDT calibration of the previous problem,...Ch. 1 - A manufacturer wants to quantify the expected...Ch. 1 - Prob. 1.28PCh. 1 - As described in a preceding problem, the...Ch. 1 - Light gates may be used to measure the speed of...Ch. 1 - You estimate your car’s fuel use by recording...Ch. 1 - When discussing concomitant methods, we used the...Ch. 1 - Prob. 1.33PCh. 1 - For the strain gauge calibration of the previous...Ch. 1 - The acceleration of a cart down a plane inclined...Ch. 1 - In general, what is meant by the term “standard”?...Ch. 1 - A common scenario: An engineer has two pencil-...Ch. 1 - Explain the potential differences in the following...Ch. 1 - Research the following test standards and codes....Ch. 1 - A hotel chain based in the United States contracts...Ch. 1 - Test code ASTM 558-13 allows for the comparison of...Ch. 1 - Suggest a reasonable number of significant digits...Ch. 1 - Using spreadsheet software (such as Microsoft...Ch. 1 - Prob. 1.44PCh. 1 - Round the following numbers to 3 significant...Ch. 1 - Express the result, rounding to an appropriate num...Ch. 1 - Express the result by rounding to an appropriate...Ch. 1 - A car’s speed is determined by the time it takes...Ch. 1 - How much error could you tolerate in (1) book...Ch. 1 - Apply the guidelines to determine the number of...Ch. 1 - Using a tape measure having 1 mm graduations, the...Ch. 1 - Show how the following functions can be...Ch. 1 - Prob. 1.53PCh. 1 - For the calibration data of Table 1.5, determine...Ch. 1 - Prob. 1.55PCh. 1 - Each of the following equations can be represented...Ch. 1 - Plot y = 10e“° 5x volts on in semilog format (use...Ch. 1 - Prob. 1.58PCh. 1 - Prob. 1.59P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- (d) Based on the situation below, give one type of error faced by Ali's and give the suggestion how Ali's can make the reading become accurate and precise. Ali uses a vernier caliper to measure the diameter of 3 tubes. Then, the readings are compared to the actual values of the tubes as shown in Table 1: Tubes number Actual value Reading measurement 0.05 mm No tube Tube 1 5.05 mm 5 mm Tube 2 10.05 mm 10 mm Tube 3 12.05 mm 12 mm Table 1arrow_forwardBourdon-type pressure gauges are used in thousands of applications. A deadweight tester is a device that is used to calibrate pressure gauges. Investigate the operation of a deadweight pressure tester. Write a brief report to discuss your findings.arrow_forward3. A consumer product company is formulating a new shampoo and is interested in foam height (in millimeters). Foam height is approximately normally distributed and has a standard deviation, 6, of 10 millimeters. The company wishes to test the following hypotheses using the results of n=25 samples: Ho: μ = 160, Ηi: μ < 160 The critical region to reject the null hypothesis is X < 155 %3D (a) Find the type I error probability a. (b) Find the probability of type II error if the true mean form height is 159 millimeters.arrow_forward
- For a site, if the load is 4,700,000 kWh, how many turbines is required if the specifications of the turbine is as follow: Rotor diameter = 60 m Cut in wind speed = 3 m/s Rated wind speed = 12 m/s Cut out wind speed = 20 m/s The mean wind speed = 6 m/s The standard deviation = 1.3 Also determine: the capacity factor, the availability factor, the load duration and the area required.arrow_forwardDiscuss the importance of measuring devices for Electric Motor and Internal Combustion Engine in terms of accuracy.arrow_forwardPlease solve this questionarrow_forward
- As an instrumentation engineer you are asked to measure pressure with accuracy rate of±0.1%, what does it imply?If the pressure actual readings are 2, 4, 5 kg/m2in the full scale division of 10 kg/m2then whatare the possible measured values of pressure if accuracy rate of instrument is ±0.1% FSD ?State your answer with justification for the following whether it is accurate and precise,accurate not precise, precise but not accurate and not accurate and not precise.arrow_forwardStrain gauges are a standard sensor to convert deformation into an electrical signal and are used in many applications. Describe how train gauges could be used to measure (i) acceleration; (ii) fluid pressure. Use a sketch for each case to illustrate how they are used.arrow_forwardPressure distribution measurements are made on a two-dimensional wing model placed in a wind tunnel. The difference between the static pressure sockets on the surface and the static pressure of the free stream is measured. 30 data is taken at each measurement point. The average of the values measured from one of the sockets near the trailing edge was calculated as 2.30 Pa, and the standard deviation was calculated as 2.65 Pa. After applying the Chauvenet criterion to these measurement values, it was decided to eliminate 3 measurements and the new mean value was found to be 2.18 Pa and the standard deviation was 2.42. It was verified that the unexcluded data fit the normal distribution curve. Data above how many Pa and below how many Pa were eliminated? Estimate how many data have negative value (?<0) after elimination.arrow_forward
- The data shown in Table 1 are the deviations from nominal diameter for holes drilled in a carbon-fiber composite material used in aerospace manufacturing. The values reported are deviations from nominal in ten-thousandths of an inch. (a) Set up and R charts on the process. Is the process in statistical control? (b) Estimate the process standard deviation using the range method. (c) If specifications are at nominal ±100, what can you say about the capability of this process? Calculate the PCR Cp Table 1. Hole Diameter Data Sample Number X1 X2 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 -30 +50 0 -50 -10 -10 +20 -40 0 0 -30 0 +20 0 0 +70 0 +10 +40 +30 +30 +30 +10 0 +20 +50 +50 -20 +50 -60 +10 0 0 +20 +10 -20 -10 0 +20 X3 X4 X5 -30 +20 +30 +50 +40 +20 +30 +20 +30 +20 +30 0 +20 +10 +40 +10 +10 -10 +50 -10 -30 -10 +50 +40 0 +30 -10 0 +30 +30 -20 +50 +30 +10 +40 +20 0 +30 +10 +30 -20 +30 +30 +20 -20 +50 +20 +10 -40 +20 -20 -10 -10 0 -20 +10 +10 +50 0 +10arrow_forwardWhat is the need for calibration of instruments? Write the steps followed in industries for calibrationarrow_forwardThe transducer specified in Table 1.1 is chosen to measurea nominal pressure of 500 cm H2O. The ambient temperature is expected to vary between 18 ∘C and 25 ∘C duringtests. Estimate the possible range (magnitude) of each listedelemental error affecting the measured pressure. How do I calculate the sensitivity error? The solution that was given: Sensitivity error(eK) = (±0.0025)(500 cm H2O)= ± 0.75 cm H2O = ± 0.00375 V My Question is, how do you obtain 0.75 since 0.0025 x 500 gives 1.25! please help. thanksarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is Metrology in Mechanical Engineering? | Terminologies & Measurement; Author: GaugeHow;https://www.youtube.com/watch?v=_KhMhFRehy8;License: Standard YouTube License, CC-BY