Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.20P
A high-speed computer is located in a temperature-controlled room at 26°C. When the machine is operating, its internal heat generation rate is estimated to be 800 W. The external surface temperature of the computer is to be maintained below 85°C. The heat transfer coefficient for the surface of the computer is estimated to be
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The thermal conductivities of human tissues vary greatly. “Fat” and “skin” have conductivities of approximately 0.200 W /m 0K and 0.0200 W /m 0K, respectively, while other “tissues” inside the body have conductivities of approximately 0.500 W /m 0
Assume that between the core region of the body and the skin surface lies a “skin” layer of 1.00mm, a “fat” layer of 0.500 cm., and 3.20 cm. layer of other “tissues”.
A)Find the R-factor for each of these three layers, and the R-factor for all layers taken together
The thermal conductivities of human tissues vary greatly. “Fat” and “skin” have conductivities of approximately 0.200 W /m 0K and 0.0200 W /m 0K, respectively, while other “tissues” inside the body have conductivities of approximately 0.500 W /m 0
Assume that between the core region of the body and the skin surface lies a “skin” layer of 1.00mm, a “fat” layer of 0.500 cm., and 3.20 cm. layer of other “tissues”.
Find the rate of energy loss when the core temperature is 37.00C and the exterior temperature is 0.000 Assume a body area of 2.00 m2. (Both a protective layer of clothing and an insulating layer of unmoving air are absent).
Answer within 10 minutes :
The temperature at the inside surface of an oven is 460 oF. The inside wall of the oven is made of brick and is 8 inch thick. The thermal conductivity of the brick is 2.2 Btu/hr.ft2.(oF/ft). The outside of the oven is covered with a 3-inch layer of asbestos as insulation, which has a thermal conductivity of 0.11 Btu/hr.ft2.(oF/ft). If the outer surface of the insulation has a temperature of 100 oF , calculate the amount of heat lost through 2 ft2 of wall area in 3 hours.
Chapter 1 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Ch. 1 - 1.1 On a cold winter day, the outer surface of a...Ch. 1 - 1.2 The weight of the insulation in a spacecraft...Ch. 1 - 1.3 A furnace wall is to be constructed of brick...Ch. 1 - 1.4 To measure thermal conductivity, two similar...Ch. 1 - To determine the thermal conductivity of a...Ch. 1 - A square silicon chip 7mm7mm in size and 0.5-mm...Ch. 1 - A cooling system is to be designed for a food...Ch. 1 - 1.80 Describe and compare the modes of heat loss...Ch. 1 - Heat is transferred at a rate of 0.1 kW through...Ch. 1 - 1.10 A heat flux meter at the outer (cold) wall of...
Ch. 1 - 1.11 Calculate the heat loss through a glass...Ch. 1 - 1.12 A wall with a thickness is made of a...Ch. 1 - 1.13 If the outer air temperature in Problem is...Ch. 1 - Using Table 1.4 as a guide, prepare a similar...Ch. 1 - 1.15 A thermocouple (0.8-mm-diameter wire) used to...Ch. 1 - Water at a temperature of 77C is to be evaporated...Ch. 1 - The heat transfer rate from hot air by convection...Ch. 1 - The heat transfer coefficient for a gas flowing...Ch. 1 - 1.19 A cryogenic fluid is stored in a...Ch. 1 - A high-speed computer is located in a...Ch. 1 - 1.21 In an experimental set up in a laboratory, a...Ch. 1 - 1.22 In order to prevent frostbite to skiers on...Ch. 1 - Using the information in Problem 1.22, estimate...Ch. 1 - Two large parallel plates with surface conditions...Ch. 1 - 1.25 A spherical vessel, 0.3 m in diameter, is...Ch. 1 - 1.26 Repeat Problem 1.25 but assume that the...Ch. 1 - Determine the rate of radiant heat emission in...Ch. 1 - 1.28 The sun has a radius of and approximates a...Ch. 1 - 1.29 A spherical interplanetary probe with a 30-cm...Ch. 1 - A spherical communications satellite, 2 m in...Ch. 1 - A long wire 0.7 mm in diameter with an emissivity...Ch. 1 - Wearing layers of clothing in cold weather is...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - A section of a composite wall with the dimensions...Ch. 1 - Repeat Problem 1.35 but assume that instead of...Ch. 1 - 1.37 Mild steel nails were driven through a solid...Ch. 1 - Prob. 1.38PCh. 1 - 1.39 On a cold winter day, the outside wall of a...Ch. 1 - As a designer working for a major electric...Ch. 1 - 1.41 A heat exchanger wall consists of a copper...Ch. 1 - 1.43 A simple solar heater consists of a flat...Ch. 1 - A composite refrigerator wall is composed of 5 cm...Ch. 1 - An electronic device that internally generates 600...Ch. 1 - 1.47 A flat roof is modeled as a flat plate...Ch. 1 - A horizontal, 3-mm-thick flat-copper plate, 1-m...Ch. 1 - 1.49 A small oven with a surface area of is...Ch. 1 - A steam pipe 200 mm in diameter passes through a...Ch. 1 - 1.51 The inner wall of a rocket motor combustion...Ch. 1 - 1.52 A flat roof of a house absorbs a solar...Ch. 1 - Determine the power requirement of a soldering...Ch. 1 - 1.54 The soldering iron tip in Problem 1.53...Ch. 1 - Prob. 1.55PCh. 1 - A pipe carrying superheated steam in a basement at...Ch. 1 - Draw the thermal circuit for heat transfer through...Ch. 1 - 1.60 Two electric resistance heaters with a 20 cm...Ch. 1 - 1.63 Liquid oxygen (LOX) for the space shuttle is...Ch. 1 - The interior wall of a large, commercial walk-in...Ch. 1 - 1.67 In beauty salons and in homes, a ubiquitous...Ch. 1 - The heat transfer coefficient between a surface...Ch. 1 - The thermal conductivity of fibreglass insulation...Ch. 1 - 1.71 The thermal conductivity of silver at 212°F...Ch. 1 - 1.72 An ice chest (see sketch) is to constructed...Ch. 1 - Estimate the R-values for a 5-cm-thick fiberglass...Ch. 1 - A manufacturer in the United States wants to sell...Ch. 1 - Referring to Problem 1.74, how many kilograms of...Ch. 1 - 1.76 Explain a fundamental characteristic that...Ch. 1 - 1.77 Explain each in your own words. (a) What is...Ch. 1 - What are the important modes of heat transfer for...Ch. 1 - 1.79 Consider the cooling of (a) a personal...Ch. 1 - Describe and compare the modes of heat loss...Ch. 1 - A person wearing a heavy parka is standing in a...Ch. 1 - Discuss the modes of heat transfer that determine...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forward1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forwardA 1-inch diameter wire of 10-ft length (which has an internal resistance of 3 kΩ, and thermal conductivity of 300 W/m-°C) is subjected to a current of 10 amperes. This heat generation caused the internal and external temperatures of the wire to be Ti and To (in K), respectively. A. Calculate the net volumetric heat generation (W/m3) in terms of current, wire resistance, and total volume of the electric wire. B. Illustrate the physical model describing the heat transfer of the abovementioned system. Indicate the control volume (differential volume) in terms of the transfer area and distance. Specify the elements/components needed in establishing the shell balance. Indicate the boundary conditions and illustrate the direction of transfer. C. What is the unsteady state heat shell balance for the system? D. Derive the steady state differential heat transfer relation describing the system. E. Using general terms (variables), derive the steady state temperature profile as a function of…arrow_forward
- A metal furnace with a 1.25 m x 0.75 m metal door is placed in a room and set to 400K. A 0.3 m x 0.3 m glass window is located in the furnace door. The thickness of the metal alloy and the glass window are 3 mm and 2 mm, respectively. The glass window has a thermal conductivity (k) of 0.7 W/m .K and the metal door has a thermal conductivity (k) of 3.5 W/m.K. The convective heat coefficient hi and ho on each site of the furnace door is estimated as 10W/m2.K. Assuming the room temperature is held constant at 297 K, calculate the total heat loss from the furnace door. P.S Could you write the solution clearly to better understanding? Step by step using formulas. Another page with detailed steps would be better. Thanks in advance.arrow_forwardA cold-storage room is constructed of an inner layer of 14 mm of pine with thermal conductivity of 0.15 W/m K, and an outer layer of 75 mm of concrete with thermal conductivity of 0.75 W/m K. The wall surface temperature is 258 K inside the cold room and 298 K at the outside surface of the concrete. Calculate the heat loss in W per 1 m2. Please keep one decimal and take positive value for the final answer.arrow_forward1.A carpenter builds an exterior house wall with a layer of wood 3.0 cm thick on the outside and a layer of Styrofoam insulation 2.2 cm thick on the inside wall surface. The wood has a thermal conductivity of 0.080 W/(m⋅K), and the Styrofoam has a thermal conductivity of 0.010 W/(m⋅K). The interior surface temperature is 19.0°C, and the exterior surface temperature is −10.0°C. (a) What is the temperature at the plane where the wood meets the Styrofoam? (b) What is the rate of heat flow per square meter through this wall?arrow_forward
- A 3 inch schedule 40 pipe is covered with two layers of insulations. The inner layer (k1 = 0.050) is 2 inches thick and the outer layer (k2 = 0.037) is 1(1/4) inches thick. Calculate the heat loss, in Btu/hr per unit length, if the outer surface temperature of the pipe is 670°F and the outer surface temperature of the outer layer of insulation is 100°F.arrow_forwardI need answer within 20 minutes please please with my best wishesarrow_forwardplease answer within 40 minutes please show complete solutions and detailed drawings. show conversions, units, and box in the final answersarrow_forward
- Question 2 Figure 2 shows the cross-sectional of inner and outer surfaces of a 4 m x 7 m brick wall with thickness of 30 cm and thermal conductivity 0.69 W/m.K. The inner and outer surfaces are to be maintained at temperatures of 26°C and 8°C, respectively. Determine the rate of heat transfer through the wall, in W. Answer: 26°C Brick wall 30 cm Figure 2 8°Carrow_forwarda flat wall is covered with a layer of insulation 1.0 in. thick whose thermal conductivity is 0.8 Btu/hr-ft- F. the temperature of the wall on the inside of the insulation is 600F. the wall loses heat to the environment by convection on the surface of the insulation. the average value of the convection heat transfer coefficient on the inslation surface is 950 Btu/hr-ft^2-F. compute the bulk temperature of the environment if the outer surface of the insulation does not exceed 105 F.arrow_forward= A processing plant is convectively heating a solid half-sphere of radius of 12 cm made of pure aluminum (k 237 W/m-K) by placing it on an insulated surface as shown in Fig. 1. It is exposed to hot exhaust gas at 300°C with a convection coefficient of 180 W/m².K. Is the lumped capacitance approximation valid? Figure 1: Half-spherearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license