Concept explainers
A wall with a thickness
Trending nowThis is a popular solution!
Chapter 1 Solutions
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
- As a designer working for a major electric appliance manufacturer, you are required to estimate the amount of fiberglass insulation packing (k = 0.035 W/m K) that is needed for a kitchen oven shown in the figure below. The fiberglass layer is to be sandwiched between a 2-mm-thick aluminum cladding plate on the outside and a 5-mm-thick stainless steel plate on the inside that forms the core of the oven. The insulation thickness is such that the outside cladding temperature does not exceed 40C when the temperature at the inside surface of the oven is 300C. Also, the air temperature in the kitchen varies from 15Cto33C, and the average heat transfer coefficient between the outer surface of the oven and air is estimated to be 12.0W/m2K. Determine the thickness of the fiberglass insulation that is required for these conditions. What would be the outer surface temperature when the inside surface of the oven is at 475C?arrow_forward1.3 A furnace wall is to be constructed of brick having standard dimensions of Two kinds of material are available. One has a maximum usable temperature of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks have the same cost and are laid in any manner, but we wish to design the most economical wall for a furnace with a temperature of 1040°C on the hot side and 200°C on the cold side. If the maximum amount of heat transfer permissible is 950 , determine the most economical arrangement using the available bricks.arrow_forward1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward
- 1.2 The weight of the insulation in a spacecraft may be more important than the space required. Show analytically that the lightest insulation for a plane wall with a specified thermal resistance is the insulation that has the smallest product of density times thermal conductivity.arrow_forward1.10 A heat flux meter at the outer (cold) wall of a concrete building indicates that the heat loss through a wall of 10-cm thickness is . If a thermocouple at the inner surface of the wall indicates a temperature of 22°C while another at the outer surface shows 6°C, calculate the thermal conductivity of the concrete and compare your result with the value in Appendix 2, Table 11.arrow_forwardA plane wall of thickness 2L has internal heat sources whose strength varies according to qG=qocos(ax) Where qo is the heat generated per unit volume at the center of the wall (x=0) and a is a constant. If both sides of the wall are maintained at a constant temperature of Tw, derive an expression for the total heat loss from the wall per unit surface area.arrow_forward
- solve this question completlyarrow_forwardFind the temperature of a rod 0 < x < 1 thermally insulated along the surface, if heat sources of density equal to (t) sin (7) are continuously distributed over the rod, and the initial temperature of the rod is an arbitrary function f(x) and the temperature of the ends is maintained equal to zero.arrow_forwardAn electric furmace is a composite wall consisting of a brick with 0.2 m refractory brick (k=2), 0.15 m insulation (k =0.15) and 0.15 m (k= 1.5) references The internal and external temperatures of the wall are 1027 °C and 27 °C, respectively. k units are kcal-m/H m2 °C. If the surface area of the wall is 1.2 m2 calculate the heat transfer rate accordingly (kcal/h). Please select one: a.10000 b.1000 c.10 d.100 e. None of themarrow_forward
- A section of a composite wall with the dimensions shown below has uniformtemperatures of 200°C and 50°C over the left and right surfaces, respectively. If the thermal conductivities of the wall materials are: kA = 70 W/(m K), kB = 60 W/(m K), kc = 40 W/(m K) and kD = 20 W/(m K), determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces.arrow_forwardA wall is made from an inhomogeneous (nonuniform) material for which the thermal conductivity varies through the thickness according to k = ax + b, where a and b are constants. The heat flux q"q" is known to be constant. Determine expressions for the temperature gradient and the temperature distribution when the surface at x = 0 is at temperature T1. Use the following values a = 11 W/K b = 25 W/m-K k = 11x + 25 W/m-K q"q" = 104 W/m^2 T1 = 60 Carrow_forwardPlease i need hand written solution on pages in 60 mins i will give you positive feedbackarrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning