Concept explainers
(a)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(b)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(c)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(d)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- There is an instrument in Johnson 334 that measures total-reflectance x-ray fluorescence (TXRF) to do elemental analysis (i.e., determine what elements are present in a sample). A researcher is preparing a to measure calcium content in a series of well water samples by TXRF with an internal standard of vanadium (atomic symbol: V). She has prepared a series of standard solutions to ensure a linear instrument response over the expected Ca concentration range of 40-80 ppm. The concentrations of Ca and V (ppm) and the instrument response (peak area, arbitrary units) are shown below. Also included is a sample spectrum. Equation 1 describes the response factor, K, relating the analyte signal (SA) and the standard signal (SIS) to their respective concentrations (CA and CIS). Ca, ppm V, ppm SCa, arb. units SV, arb. units 20.0 10.0 14375.11 14261.02 40.0 10.0 36182.15 17997.10 60.0 10.0 39275.74 12988.01 80.0 10.0 57530.75 14268.54 100.0…arrow_forwardA mixture of 0.568 M H₂O, 0.438 M Cl₂O, and 0.710 M HClO are enclosed in a vessel at 25 °C. H₂O(g) + C₁₂O(g) = 2 HOCl(g) K = 0.0900 at 25°C с Calculate the equilibrium concentrations of each gas at 25 °C. [H₂O]= [C₁₂O]= [HOCI]= M Σ Marrow_forwardWhat units (if any) does the response factor (K) have? Does the response factor (K) depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)?arrow_forward
- Provide the structure, circle or draw, of the monomeric unit found in the biological polymeric materials given below. HO OH amylose OH OH 행 3 HO cellulose OH OH OH Ho HOarrow_forwardWhat units (if any) does K have? Does K depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)? in calculating the response factorarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used Ai solution and don't used hand raitingarrow_forwardOA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forwardDon't used hand raitingarrow_forward
- Quizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




