Concept explainers
(a)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(b)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(c)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.
(d)
Interpretation:
The member of the given pair which is expected to have high boiling point has to be identified.
Concept Introduction:
The derivative of alkane with halogen instead of one or more hydrogen atoms is known as halogenated alkane. If the same is present in cycloalkane, then it is known as halogenated cycloalkane. They are product of reaction between alkane/cycloalkane with halogens.
Physical properties of halogenated alkanes:
Boiling point of halogenated hydrocarbon is usually higher than the corresponding hydrocarbon. This is because, there is a polarity difference between carbon and halogen atom. This result in increased dipole‑dipole interations.
General trend considering the boiling point and melting point of halogenated hydrocarbon are,
- Melting and boiling points increase with the increase in size of alkyl groups that is present. Due to the increasing intermolecular forces, the melting and boiling point increases.
- As the size of halogen atom increases, the melting point and boiling point also increases.
Halogenated hydrocarbons do not possess hydrogen bonding capability. Therefore, solubility of halogenated hydrocarbon is limited.

Want to see the full answer?
Check out a sample textbook solution
Chapter 1 Solutions
EBK ORGANIC AND BIOLOGICAL CHEMISTRY
- Including activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M NH4 Ksp Hg2Br2 = 5.6×10-23.arrow_forwardgive example for the following(by equation) a. Converting a water insoluble compound to a soluble one. b. Diazotization reaction form diazonium salt c. coupling reaction of a diazonium salt d. indacator properties of MO e. Diazotization ( diazonium salt of bromobenzene)arrow_forward2-Propanone and ethyllithium are mixed and subsequently acid hydrolyzed. Draw and name the structures of the products.arrow_forward
- (Methanesulfinyl)methane is reacted with NaH, and then with acetophenone. Draw and name the structures of the products.arrow_forward3-Oxo-butanenitrile and (E)-2-butenal are mixed with sodium ethoxide in ethanol. Draw and name the structures of the products.arrow_forwardWhat is the reason of the following(use equations if possible) a.) In MO preperation through diazotization: Addition of sodium nitrite in acidfied solution in order to form diazonium salt b.) in MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at low pH c.) In MO experiment: addition of sodium hydroxide solution in the last step to isolate the product MO. What is the color of MO at pH 4.5 d.) Avoiding not cooling down the reaction mixture when preparing the diazonium salt e.) Cbvcarrow_forward
- A 0.552-g sample of an unknown acid was dissolved in water to a total volume of 20.0 mL. This sample was titrated with 0.1103 M KOH. The equivalence point occurred at 29.42 mL base added. The pH of the solution at 10.0 mL base added was 3.72. Determine the molar mass of the acid. Determine the Ka of the acid.arrow_forwardAs the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will its major product: 2,0° with a new C-C bond as If this reaction will work, draw the major organic product or products you would expect in the drawing aree below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and desh bonds if necessary, for example to distinguish between major products with different stereochemistry. If the major products of this reaction won't have a new C-C bond, just check the box under the drawing area and leave it blank.arrow_forwardwrite the mechanism of the nucleophilic acyl substitution reaction, please give an examplearrow_forward
- The compound in the figure is reacted with 10 n-butyllihium, 2° propanone, and 3º H2O. Draw and name the products obtained. SiMe3arrow_forwardCaffeine (C8H10N4O2, pictured below) is a weak base. The pKb of caffeine is 10.4. What is the pH of a 0.0155 M solution of caffeine?arrow_forward2-Cyclopentyl-2-methyl-1,3-dioxolane is reacted with H₂SO₄. Draw and name the structures of the products.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




