The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines including the silicon line near 6.6 angstroms (0.66 nm). If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6611 nm, how fast is the gas moving? km/s (be sure to convert your answer to kilometers!) (Enter a positive value-if you get a negative answer ignore the minus sign.)
The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines including the silicon line near 6.6 angstroms (0.66 nm). If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6611 nm, how fast is the gas moving? km/s (be sure to convert your answer to kilometers!) (Enter a positive value-if you get a negative answer ignore the minus sign.)
Related questions
Question

Transcribed Image Text:Cas A SNR North Lobe
Chandra ACIS image
(M. Stage)
region of spectrum->
104
km/s (be sure to convert your answer to kilometers!)
(Enter a positive value--if you get a negative answer ignore the minus sign.)
1000
100
Combine counts / Ang./ (0.964324 sq. arcsec)
10
0.1
Cas A Ms Spectrum from 4362.5 4458.5, region size 0.964324 sq. arcsec
Mapangh
5
Silicon line
10
20
Wavelength (Angstroms)
The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines
including the silicon line near 6.6 angstroms (0.66 nm).
If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6611 nm, how fast is the gas moving?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
