The radius of the nebula is about 0.401 light-years. The gas is expanding away from the star at a rate of about 37 kilometers/second . Considering that distance = velocity x time, calculate how long ago the gas left the star if its speed has been constant the whole time. Make sure you use consistent units for time, speed, and distance. Answer in years.
Stellar evolution
We may see thousands of stars in the dark sky. Our universe consists of billions of stars. Stars may appear tiny to us but they are huge balls of gasses. Sun is a star of average size. Some stars are even a thousand times larger than the sun. The stars do not exist forever they have a certain lifetime. The life span of the sun is about 10 billion years. The star undergoes various changes during its lifetime, this process is called stellar evolution. The structure of the sun-like star is shown below.
Red Shift
It is an astronomical phenomenon. In this phenomenon, increase in wavelength with corresponding decrease in photon energy and frequency of radiation of light. It is the displacement of spectrum of any kind of astronomical object to the longer wavelengths (red) side.
- . The radius of the nebula is about 0.401 light-years. The gas is expanding away from the star at a rate of about 37
kilometers/second
- . Considering that distance = velocity x time, calculate how long ago the gas left the star if its speed has been constant the whole time. Make sure you use consistent units for time, speed, and distance. Answer in years.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps