1. A planetary nebula has an angular diameter of 76 arc seconds and a distance of 5100 ly. What is its linear diameter (in ly)? Hint: Use the small-angle formula: angular diameter (in arc seconds) 2.06 ✕ 105= linear diameter distance
Q: 2. Explain the different mechanisms that power the internal heating of a giant star, a main sequence…
A: Question : Explain the different mechanisms that power the internal heating of a…
Q: 1. The stellar parameter that best determines a star's location on the main sequence is: Select one:…
A: 1. The stellar parameter that best determines a star's location on the main sequence is: c. mass…
Q: A star's Zero Age Main Sequence (ZAMS) radius R, luminosity L, and effective temperature Teff depend…
A: Given: Zero Age Main Sequence is beginning point of the main sequence of the star. The radius at…
Q: Two stars are in a closely orbiting binary system. The smaller star (a K-type main sequence star)…
A: The correct option. Following the mass transfer, which of the following is now true of the main…
Q: 3) indicate which locations in the H-R diagram correspond to places where the evolution is slow.…
A: Using the H-R diagram shown the places where the evoultion has been slow is identified.
Q: A molecular cloud is 22 pc in diameter and is located 303 pc from Earth. What is its angular size on…
A:
Q: For a main sequence star with luminosity L, how many kilograms of hydrogen is being converted into…
A:
Q: Suppose a protostar has a luminosity of 157,341 Lo and a surface temperature of 4,540 K (Kelvins).…
A: Given: Luminoscity of protostar, 157341 LS Surface temperature of protostar, 4540 K Surface…
Q: Which of the following is least reasonable regarding the mass of stars? Group of answer choices…
A: Stars are of different sizes and they have their own set of characteristics based on multiple…
Q: Assuming that at the end of the He burning phase of the stellar core (r R_core). Calculate the…
A:
Q: 24 If the Temperature of the core of a supernova is 3200 x 1023 K, what should be the average…
A: Step 1:Step 2:
Q: Please answer within 90 minutes.
A: Part a. Part b. Part c.
Q: Suppose you observe a tight eclipsing binary with orbital period of 3 days, and radial velocity…
A: 1. Suppose you observe a tight eclipsing binary with orbital period of 3 days, and radial velocity…
Q: True or False 8. Almost all stars are in binary systems. The book says: "So far you have been…
A: The statement: All stars are in binary systems. The book says: "So far you have been considering the…
Q: Explain in full detail how and why medium-mass stars like the Sun evolve off the main sequence. Be…
A: Answer is explained below with proper explanation
Q: A planetary nebula is visible due to ____.
A: The nebula is the bright area in the sky, which can be cloud of stars or gas.
Q: If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength…
A: Concept: "The Wien's displacement law states that the wavelength carrying maximum energy is…
Q: Based on what you learned about the source of stellar energy and how stars make energy, select all…
A: Solution: 1. Many stars make energy with the proton-proton cycle. True, Many, less massive stars…
Q: 2GM What is the escape velocity (in km/s) from the surface of a 1.1 Mo neutron star? From a 3.0 M.…
A: Escape velocity is the speed that is sufficient for a body to escape from a gravitational center of…
Q: White Dwarf Density. If a star the size of the Sun collapses to form a white dwarf the size of…
A: since the mass remains same , therefore the ratio of density is simply equal to reciprocal ratio of…
Q: When a region of a molecular cloud collapses, a protostar is formed. How do the temperature and…
A: Protostars form primarily in the spiral arms of galaxies in the modern era, which spans at least the…
Q: White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2…
A: It is given that, M=0.98 solar mass=0.98×1.989×1030 kg=1.95×1030 kgρ=2×106 g/cm3=2×106×103…
Q: 5. A star whose temperature is 8000 K has a peak wavelength of 362.5 nm, according to Wien's Law. If…
A: The peak wavelength by observer on earth = 362.365nm.Your required explanation is given below. Thank…
Q: The approximate relationship between the luminosity and the period of Cepheid variables is Lstar[in…
A:
Q: c) The star may be assumed to evolve with effective temperature, Teff, remaining constant. Show that…
A: To start, we'll use the equation for the luminosity of a star: where L is the luminosity, R is the…
Q: You discover a binary star system in which one member is a 15 solar-mass main-sequence star and the…
A: Required : The correct option.
Q: The first stars to form in our galaxy a. had circular orbits. b. had highly elliptical…
A: Population 1 stars are the newer and younger stars.
Q: Consideration of the total energy in a radio lobe of an AGN implies that the energy is distributed…
A: Explanation -: The scaling of the magnetic field with observed luminosity (Las) in the…
Q: planetary nebula expands at 38 km/s. How far will it expand (in km) in 3 million years?
A: Here given nebula is expanding with given speed. As in 1 sec nebula expands 38 Km, In 3 million…
Q: A planetary nebula expands at 32 km/s. How far will it expand (in km) in 0.6 million years?
A: Expansion rate of the Nebula: It can be defined as the distance up to which the nebula expands in a…
Q: Based on what you know about main-sequence stars, select all of the correct statements from the…
A: Required : Correct statements .
Q: Based on what you know about the interactions between stars and other interstellar media, select all…
A: Interstellar space and formation of stars Interstellar space is the space between stars. This space…
Q: How high or low a star is on the main sequence is dictated primarily by ... Select one: A. its…
A: Answer: A high or low a star is on the main sequence is dictated primarily is discussed below:
Q: Select all of the statements about the main sequence stage in the life of a star that are TRUE:…
A: The statements about the main sequence stage in the life of a star that are TRUE: All stars spend…
Q: 7. Let's characterize a typical neutron star. (a) Compute its luminosity in units of the solar…
A: The neutron star has a surface temperature of 106 K and a radius of 7 km One solar luminosity is…
Q: QUESTION 16 Use the figure shown below to complete the following statement: A low-mass protostar…
A: During the formation of a low-mass protostar, a protostar accumulates mass by accreting material…
1. A planetary nebula has an angular diameter of 76 arc seconds and a distance of 5100 ly. What is its linear diameter (in ly)?
angular diameter (in arc seconds) |
2.06 ✕ 105 |
linear diameter |
distance |
2. Suppose a planetary nebula is 3.2 pc in diameter, and Doppler shifts in its spectrum show that the planetary nebula is expanding at 31 km/s. How old is the planetary nebula in yr? (Note: 1 pc = 3.1 ✕ 1013 km and 1 yr = 3.2 ✕ 107 s.)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
- Which statement is most logical? a Once gravity overcomes thermal pressure, nebulae cloud turns into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. b If gravity is stronger than thermal pressure, nebulae cloud contracts into molecular cloud. If it is cold and dense enough, molecular cloud might turn into protostar. c If a molecular cloud is cold and dense enough, it turns into a protostar. Once gravity overcomes thermal pressure, protostar might become molecular cloud. d If a nebulae cloud is cold and dense enough, it turns into molecular cloud. If gravity is stronger than thermal pressure, molecular cloud might become protostar.Based on what you learned about stellar evolution, select all of the correct statements from the following list. 1. The period of some Cepheid variables actually changes. 2. When getting dimmer, variable stars are releasing energy; when getting brighter they are storing energy. 3. variable stars are expanding and contracting 4. despite their variability, variable stars stay in a specific position on the H-R diagram. 5. A changing period in a Cepheid variable means that the size of the star is changing and that the star is therefore evolving. 6. Only stars on the instability strip are variable. 7. More massive stars will vary their brightness more quickly.Assume that when a certain main sequence star becomes a giant gas, its luminosity increases from L to 1000 L and its radius also increases from R to 1000 R. If the initial surface temperature is T, what approximately is the final surface temperature? A. 0.032 T B. 0.18 T C. 0.0010 T D. 0.010 T
- Place the following events in the formation of stars in the proper chronological sequence, with the oldest first and the youngest last. w. the gas and dust in the nebula flatten to a disk shape due to gravity and a steadily increasing rate of angular rotation x. a star emerges when the mass is great enough and the temperature is high enough to trigger thermonuclear fusion in the core y. the rotation of the nebular cloud increases as gas and dust concentrates by gravity within the growing protostar in the center z. some force, perhaps from a nearby supernova, imparts a rotation to a nebular cloud y, then z, then w, then x z, then y, then w, then x w, then y, then z, then x z, then x, then w, then y x, then z, then y, then w MacBook Air on .H. O O O O1Which of the following statements is wrong? A. A main-sequence star is cooler and brighter than it was as a protostar. B. Carbon fusion occurs in high-mass stars but not in low-mass stars because the cores of low-mass stars never contain significant amounts of carbon. C. when a main-sequence star exhausts its core hydrogen fuel supply, the core shrinks while the rest of the star expands. D. After a supernova explosion, the remains of the stellar core will be either a neutron star or a black hole.
- Give ALL correct answers referring to the properties of known stars, i.e., B, AC, BCD... A) On the main sequence, more massive stars are colder. B) High mass stars are the most numerous type of stars observed in the galaxy. C) Giants are colder than main sequence stars at the same luminosity. D) Giants are brighter than dwarfs at the same temperature. E) On the main sequence, more massive stars are dimmer. F) White dwarf stars are much denser than main sequence stars. Hint: White dwarf stars have about the mass of our sun, but are only the size of the Earth. Therefore, they have a very high density.Shown are three main sequence stars. Each one is a different size, but the color is not shown. Rank from longest to shortest the total amount of time it was a protostar before it was a main sequence star. A ? O Longest AC B Shortest O Longest BCA Shortest O Longest A B C Shortest B ? ? C All the stars would be a protostar for the same amount of time1) a) Calculate the Jeans length for the dense core of a giant molecular cloud with T=10 K, n = 1010/m³, and µ=2. b) Estimate the adiabatic sound speed for this core, using y=5/3. c) Use this speed to find the amount of time required for a sound wave to cross the cloud t3=2Rj/vs. d) Compare your answer with the free-fall scale and comment your results.
- A. Estimate the surface gravity of a neutron star with R = 10 km and M = 2M. . B. Determine the density of such a neutron star in g/cm³. C. How much would a teaspoon (5 cm³) of this neutron star weigh on Earth? This material is known as neutronium. Give your answer in pounds. D. Which would be heavier: a teaspoon of neutronium weighed on Earth, or a teaspoon of water weighed on the surface of a neutron star?2. A galaxy cluster has a galaxy behind it whose image we see as being smeared out and curved, with an angular radius of curvature on the sky of θE. The background galaxy is at redshift zgal and the cluster is at zclust. What is the mass of the cluster in solar masses? Give your response in scientific notation with one decimal place. (The Hubble constant is of course 70 km/s/Mpc, and you can assume the Hubble law for these low redshifts). Values: zgal = 0.11 zclust = 0.07 θE = 117.4 arcsecondsA main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES MASS VANISH as H is fused to He in the star’s core? Note: When we say “mass vanish '' what we really mean is “gets converted into energy and leaves the star as light”. Note: approximate answer: 3.55 E14 kg/s b. At what rate is H converted into He? To do this you need to take into account that for every kg of hydrogen burned, only 0.7% gets converted into energy while the rest turns into helium. Approximate answer = 5E16 kg/s c. Assuming that only the 10% of the star’s mass in the central regions will get hot enough for fusion, calculate the main sequence lifetime of the star. Put your answer in years, and compare it to the lifetime of the Sun. It should be much, much shorter. Approximate answer: 30 million years.