7. Let's characterize a typical neutron star. (a) Compute its luminosity in units of the solar luminosity. Consider that the neutron star has a surface effective temperature of 106 K and a radius of 7 km. (b) In which wavelength does the neutron star radiate most energy (in nm)? (c) In which region of the spectrum it will be easier to detect / observe such an object (look at Figure 2)? mmmmmm 0.0001 nm 0.01 nm Gamma rays 400 nm Increasing energy X-rays Increasing wavelength 10 nm 1000 nm 0.01 cm Ultra- violet Infrared Visible light 500 nm 600 nm Figure 2: Electromagnetic spectrum 1 cm 1m Radio waves Radar TV FM 700 nm 100 m AM

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
7.
Let's characterize a typical neutron star.
(a)
Compute its luminosity in units of the solar luminosity. Consider that the neutron star has a
surface effective temperature of 106 K and a radius of 7 km.
(b)
In which wavelength does the neutron star radiate most energy (in nm)?
(c)
In which region of the spectrum it will be easier to detect / observe such an object (look at
Figure 2)?
mmmmmm
0.0001 nm 0.01 nm
Gamma rays
400 nm
Increasing energy
X-rays
Increasing wavelength
10 nm 1000 nm 0.01 cm
Ultra-
violet
Infrared
Visible light
500 nm
600 nm
Figure 2: Electromagnetic spectrum
1 cm
1m
Radio waves
Radar TV FM
700 nm
100 m
AM
Transcribed Image Text:7. Let's characterize a typical neutron star. (a) Compute its luminosity in units of the solar luminosity. Consider that the neutron star has a surface effective temperature of 106 K and a radius of 7 km. (b) In which wavelength does the neutron star radiate most energy (in nm)? (c) In which region of the spectrum it will be easier to detect / observe such an object (look at Figure 2)? mmmmmm 0.0001 nm 0.01 nm Gamma rays 400 nm Increasing energy X-rays Increasing wavelength 10 nm 1000 nm 0.01 cm Ultra- violet Infrared Visible light 500 nm 600 nm Figure 2: Electromagnetic spectrum 1 cm 1m Radio waves Radar TV FM 700 nm 100 m AM
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Stellar evolution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON