If Betelgeuse is a M2 type star, what is the approximate temperature of the star in K?
Q: Why does a type Ia supernova explode? in two sentences.
A:
Q: Many of the bright stars in the night sky are highly luminous normal blue stars (such as Acrux), and…
A:
Q: What star is a white dwarf that is much more dim and hotter than the sun. and which type of stars…
A: 1.carbon-oxygen white dwarfs 2. hydrogen- fusing white dwarfs 3. Sirius B 4. Procyon B 5. Stein 2051…
Q: If an X-ray binary consists of a 17-solar-mass star and a neutron star orbiting each other every…
A: The expression for the Kepler’s third law is as follows: MA+MB=a3p2 1
Q: d²p GMp %3D dt2 (a² + p2)3/2* 2. Suppose that p < a, that is, the star is deep inside the cluster.…
A:
Q: As we have discussed, Sirius B in the Sirius binary system is a white dwarf with MB ∼ 1M , LB ∼…
A: Given that: The mass of Sirius B: MB ~ 1MThe luminosity of Sirius B: LB ~ 0.024LThe radius of Sirius…
Q: This star has a mass of 3.3 MSun. What is the main sequence lifetime of this star? You may assume…
A:
Q: where do hydrogen-buring stars spend most of their time on the H-R Diagram? Is it the main sequence,…
A: Hydrogen burning stars are those stars which burns hydrogen as their dominant fuel. Horizontal…
Q: If a neutron star has a radius of 9.12 km and a temperature of 3.63 x 106 K, how luminous is it in…
A: 1)Using stefan's lawP = σ A T4Where P is the power σ is the stefan's constant A is the area of…
Q: fill in missing word a) One difference between a type I and type II supernova is the formation of…
A: Few sentences are given and we need to fill in the blanks.
Q: Consider two stars, A and B, of equal size. You take a spectrum of each star and find that the flux…
A:
Q: Assuming that at the end of the He burning phase of the stellar core (r R_core). Calculate the…
A:
Q: An O8 V star has an apparent magnitude of +2. Use the method of spectroscopic parallax to estimate…
A: The apparent magnitude m of the star is given to be m=+1. From HR absolute magnitude M of a star…
Q: After the hydrogen in the core of a star is used up the star moves off the main-sequence, and as the…
A: The mass of the star affects the temperature at which electron degeneracy pressure in the star's…
Q: V603 Aquilae was a nova outburst that occurred on June 8, 1918, at which time it attained a peak…
A: Given information: The apparent magnitude of the (m) = -0.5 The apparent angular diameter of shell…
Q: Calculate the surface temperature of the star Betelgeuse whose λmax is 850 nm
A: Wien's Law of Blackbody Radiation λmaxT = a constant = 3 × 106 where λmax = wavelength of radiation…
Q: A G0 III star with a mass of about 1 M⊙ sits on the horizontal branch. Horizontal branch stars are…
A: Given information: The mass of the star (M) = 1 M⊙ The luminosity of the star (L) = 100 L⊙ The…
Q: Convert the average mass density in gm/cm-3 of a M = 0.5 Msun R = 0.015 Rsun white dwarf to the…
A: Given that For white dwarf star given that M = 0.5 Msun R = 0.015 Rsun We know that mass of sun…
Q: The present-day density of the sun is about 1.4 g/cm3. The volume of a sphere is 4/3πr3. The density…
A: Given:ρsun=1.4g/cm3ρstar=ρsunxRsunRstar3volume of sphere =4/3πr3to find:ρsun when Rsun=50 times…
Q: If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength…
A: Concept: "The Wien's displacement law states that the wavelength carrying maximum energy is…
Q: Consider an M-dwarf star of mass 0.1M⊙ and luminosity 10−3L⊙. When the star joins the main sequence…
A: Luminosity of the star is defined as the power emitted by the star. Power is simply the energy…
Q: Vega has Mv = 0.5. How large is Mbol? Calculate the luminosity of Vega. Remember that Mbolo = 4.75.…
A: Given information": The absolute visible magnitude of Vega (Mv) = 0.5 The Spectral class of Vega is…
Q: a 120 Mo star forms with log10 Te = 4.727 and logio (L/Lo) = 6.252, estimate its Eddington…
A: Given: log10Teff/k=4.727 log10L/L⊙=6.252 To Find: Eddington luminosity
Q: An object was discovered on Feb. 24.37 UT (position R.A. = 5h35m.8, Decl. = -69 18'), obtained m =…
A: Absolute magnitude and apparent magnitude of any stellar object are related as M=m-2.5logd102M is…
Q: An object was discovered on Feb. 24.37 UT (position R.A. = 5h35m.8, Decl. = -69 18'), obtained m =…
A: Given information: The apparent magnitude of the SN at its peak brightness is (mp) = 2.8 The…
Q: A block of mass 1.0 kg is attached to a horizontal spring that has a force constant of 2,000 N/m as…
A: Given:mass of block, m = 1kgcompression of spring, xmax = -3.0 cm = -0.03 mspring constant, k = 2000…
Q: The flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m?. The luminosity of the…
A: flux (I) = 3.0182×10-10 Wm2luminosity = 6×109 solar luminosities
Q: If a 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun…
A: A 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun neutron…
Q: Vega Star of radius (1.6832) million km emit a) thermal radiation as a black body radiation at…
A:
Q: A Type Ia supernova is observed and achieves an apparent magnitude of m = 19.89 at peak brightness.…
A: Given Values :The absolute magnitudes of Type Ia supernovae at peak brightness, M = -19 Apparent…
Q: If an X-ray binary consists of a 10-solar-mass star and a neutron star orbiting each other every…
A: from the equation relating the period of orbit P and the semi-major axis of orbit a, we have…
Q: A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES…
A: Given information: The mass of the star (m) = 25M⊙ The luminosity of the star (L) = 80000L⊙ part a):…
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
- If a neutron star has a radius of 13 km and a temperature of 9.0 x 10° K, how luminous is it? Express your answer in watts and also in solar luminosity units. (Hint: Use the relation . Use 5,800 K for the surface temperature of the Sun. The luminosity of the Sun is 3.83 × 1026 w.) luminosity in watts w luminosity in solar luminosity units LoIf an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every 15.4 days, what is their average separation? (Hint: Use the version of Keller's third law for binary stars, Ma + Mb = a^3 /p^2 ; make sure you express quantities in unites of AU, solar masses, and years. Assume the mass of a neutron Star is 1.6 solar masses.) ___________ AUIf a contracting protostar is two times the radius of the Sun and has a temperature of only 1890 K, how luminous will it be relative to the Sun?
- Why are Cepheid variables important? O Cepheids variables are pulsating stars whose pulsation periods are directly related to their true luminosities. Therefore they can be used as distance indicators. O Cepheids variables are supermassive stars that are on the verge of becoming supernovae. Therefore they allow us to choose candidates to watch if we hope to observe a supernova. O Cepheid variables are stars that vary in brightness because they harbor a black hole. Therefore, they provide direct evidence for black holes. O Cepheids variables are a type of irregular galaxy, much more common in the early universe. Therefore they help to understand how galaxies formed.A supernova’s energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun’s current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein’s formula E=mc2 calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; ; mass of earth = 6×1024kg; c = 3×108m/s. Your answer should be 200-300 Earth masses.](a) Estimate the Eddington luminosity of a 0.072 M, star and compare your answer to the main-sequence luminosity given in Problem 21. Assume k = 0.001 m² kg¯'. Is radia- tion pressure likely to be significant in the stability of a low-mass main-sequence star? (b) If a 120 Mo star forms with log1o T. = 4.727 and log1o(L/Lo) = 6.252, estimate its Eddington luminosity. Compare your answer with the actual luminosity of the star.
- A star has initially a radius of 640000000 m and a period of rotation about its axis of 20 days. Eventually it changes into a neutron star with a radius of only 50000 m and a period of 0.2 s. Assuming that the mass has not changed, find Assume a star has the shape of a sphere. (Suggestion: do it with formula first, then put the numbers in) [Recommended time : 5-8 minutes] (a) the ratio of initial to final angular momentum (Li/Lf) Oa. 1.42E+15 Ob. 19 Oc. 0.0527 Od. 7.06E-16 (b) the ratio of initial to final kinetic energy Oa. 8.18E-23 Ob. 456000 Oc. 2.19E-6 Od. 1.22E+22 52%Why are emission nebulae red ?RR Lyrae stars have essentially the same luminosity curve, with periods of up to 1 day. False True 47
- What are the main products of the fusion reactions that take place in low mass main sequence stars?Why does a type II supernova explode? in two sentences.If a contracting prostar is 3 times the radius of the sun and has a temperature of 1680 k how lumminous will it be relative to the sun? Use luminosity radius temperature to the relation. The surface temperature of the sun is 5800k