a)What type of supernova is most luminous in light? (b) What kind of star results in such an explosion? (c) What type of supernova is most luminous in neutrino emission?
Q: Why does a type Ia supernova explode? in two sentences.
A:
Q: A supernova remnant is now 3.65 pc in radius and is expanding at 4,850 km/s. Approximately how many…
A: Given, Radius of remnant of supernova = 3.65 pc = 1.116×1014km Rate of expanding = 4850 km/s
Q: Determine the mean molecular mass of a star for both the scenario of being completely neutral and…
A:
Q: Explain what happens during a supernova, what features it produces, and the process of…
A: Hwy dear have a look
Q: e la supernova?
A: To trigger a type la supernova one of the two stars must be a white dwarf . The other star is often…
Q: Neutrinos are experimentally determined to have an extremely small mass. Huge numbers of neutrinos…
A: A neutrino may be a sub-atomic particle, which is emitted during the decay. It can uncharged…
Q: Explain what makes the planetary nebula glow and what makes the supernova remnant glow. Which of…
A: Planetary nebulae and supernova remnants are both glowing celestial objects in space, but they are…
Q: What critical event must occur in order for a protostar to become a star?
A: A very young star that is yet gathering mass from the parent molecular cloud is called a protostar.…
Q: Suppose a protostar has a luminosity of 157,341 Lo and a surface temperature of 4,540 K (Kelvins).…
A: Given: Luminoscity of protostar, 157341 LS Surface temperature of protostar, 4540 K Surface…
Q: a supernova remnant is now 2.95 pc in radius and is expanding at 3,850 km/s. approximately how many…
A: Given information: The radius of the supernova remnant (D) = 2.95 pc = 2.95 (3.1×1013 km) = 9.145…
Q: When two stars are in the same star system, they can affect each other’s evolution. Two stars in the…
A: Two stars in the same system might evolve at a different pace, depending on their distances in the…
Q: The present-day density of the sun is about 1.4 g/cm3. The volume of a sphere is 4/3πr3. The density…
A: Given:ρsun=1.4g/cm3ρstar=ρsunxRsunRstar3volume of sphere =4/3πr3to find:ρsun when Rsun=50 times…
Q: If the hottest star in the Carina Nebula has a surface temperature of 51,000 K, at what wavelength…
A: Concept: "The Wien's displacement law states that the wavelength carrying maximum energy is…
Q: Consider an M-dwarf star of mass 0.1M⊙ and luminosity 10−3L⊙. When the star joins the main sequence…
A: Luminosity of the star is defined as the power emitted by the star. Power is simply the energy…
Q: Vega has Mv = 0.5. How large is Mbol? Calculate the luminosity of Vega. Remember that Mbolo = 4.75.…
A: Given information": The absolute visible magnitude of Vega (Mv) = 0.5 The Spectral class of Vega is…
Q: calculate the main sequence lifetime of (a) a 4M☉ star, and (b) a 0.75M☉ star. Express the lifetimes…
A: The lifetime of the main sequence stars is given as: τMSτSun = MMsun-2.5 where, τsun = 1010 years
Q: Suppose the Sun’s main energy source was due to gravitational collapse and assume that the Sun has…
A:
Q: The ring around SN 1987A (see the figures below) initially became illuminated when energetic photons…
A: To calculate how long after the supernova SN 1987A the ring became illuminated, we need to consider…
Q: What is the difference between type I and type II supernovae
A: To determine Difference between type I and type II supernovae
Q: A supernova remnant is now 3.05 pc in radius and is expanding at 1,100 km/s. Approximately how many…
A: Given, The radius: r=3.05 pc=3.05×3.1 × 1013 km 1 pc =3.1 × 1013 kmor, r=9.455 ×…
Q: An object was discovered on Feb. 24.37 UT (position R.A. = 5h35m.8, Decl. = -69 18'), obtained m =…
A: Absolute magnitude and apparent magnitude of any stellar object are related as M=m-2.5logd102M is…
Q: In a star of 1 solar mass (M☉), the core hydrogen burning phase, also known as the main sequence…
A: In the field of stellar evolution, there is a principle that the lifetime of a star on the main…
Q: A planetary nebula expands at 32 km/s. How far will it expand (in km) in 0.6 million years?
A: Expansion rate of the Nebula: It can be defined as the distance up to which the nebula expands in a…
Q: Select all of the statements about the main sequence stage in the life of a star that are TRUE:…
A: The statements about the main sequence stage in the life of a star that are TRUE: All stars spend…
Q: We will take a moment tổ compare ROw BrigriLIy a Wiite uwan stal sines Compdleu 10 a leu glant 3lai.…
A: Given: Tw=10,000 KTR=5,000 KRw=1100RsunRR=100Rsun we have to find ratio of Luminosity: LRLw=?
Q: The flux received at the Earth from Supernova 1885 was 3.0182 x 10 10 W/m?. The luminosity of the…
A: flux (I) = 3.0182×10-10 Wm2luminosity = 6×109 solar luminosities
Q: If Betelgeuse is a M2 type star, what is the approximate temperature of the star in K?
A: Introduction - It is a supergiant star and the distance of this star from the sun is approximately…
Q: If a 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun…
A: A 1.40 MSun neutron star has a radius of 10.0 km, what is the radius (in km) of a 2.15 MSun neutron…
Q: During the collapse of a supernova explosion, calculate the change in gravitational potential hergy…
A: During explosion of supernova, the gravitational potential energy of the core is lost, hence the…
Q: What determines the mass distribution of forming stars, the initial mass function (IMF
A: Stars are formed when gas, giant clouds, dust etc. present abundantly in space come together due to…
Q: If a circular accretion disk around a 1.4 M. neutron star has a radius of 8.00 x 10° km as measured…
A: Given data: Mass of the Neutron star is, M= 1.4 Ms Where, Ms - Mass of the sun Therefore, Mass of…
Q: A supernova remnant is now 3.85 pc in radius and is expanding at 3,350 km/s. Approximately how many…
A:
Q: A main sequence star of mass 25 M⊙has a luminosity of approximately 80,000 L⊙. a. At what rate DOES…
A: Given information: The mass of the star (m) = 25M⊙ The luminosity of the star (L) = 80000L⊙ part a):…
Q: If an X-ray binary consists of a 16 solar mass star and a neutron Star orbiting each other every…
A: Kepler’s third law for binary stars
(a)What type of supernova is most luminous in light?
(b) What kind of star results in such an explosion?
(c) What type of supernova is most luminous in neutrino emission?
(d) What kind of star results in such an explosion?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
- How much energy would be released if a star with a mass of 25 Msun and a radius of 10 Rsun detonates as a supernova explosion in 1 second? (Hint: think about the definition of binding energy). Express your answer in terms of solar luminosities.Comment on the difference between a nova and supernova. [Note: There are two basic types of supernova.]A red giant that was originally a 9.5MSun main-sequence star loses a solar mass in 100,000 years via a superwind. What is this mass loss rate in units of solar masses per year? (the answer is not 0.000095 solar masses per year). Additionally, at this mass loss rate, what will the red giant's mass be after 0.5 million years? (Enter your answer as a multiple of MSun.)
- A supernova’s energy is often compared to the total energy output of the Sun over its lifetime. Using the Sun’s current luminosity, calculate the total solar energy output, assuming a 1010 year main-sequence lifetime. Using Einstein’s formula E=mc2 calculate the equivalent amount of mass, expressed in Earth masses. [Hint: The total energy output of the Sun over its lifetime is given by its current luminosity times the number of seconds in a year times its ten billion-year lifetime; ; mass of earth = 6×1024kg; c = 3×108m/s. Your answer should be 200-300 Earth masses.]if a star is converted every bit of its mass. into energy the conversion efficiency would be 100%. however no star is this efficient in its energy production stars with less than 1.3 solar masses convert hydrogen into helium with an efficiency of only 0.7%. besring in mind that aldebaram has a mass of 2.32*10^30 kg. how long will it live if it converts all of its hydrogen into helium with an efficiency of 0.7%. 1 year = 365.25 days. lifetime= yearsWhat is the escape velocity (in km/s) from the surface of 1.1 M neutron star? (hint: Use the formula for the escape velocity Ve = 2GM/R ; make sure to express quantities in United of meters, kilograms, and seconds. Assume a neutron has a radius of 11 km and assume the mass of the sun is 1.99 x10^30 kg.) 1.1 M neutron Star = _________ km/s 3.0 neutron Star = __________ km/s
- Assume that the mass of the core of a star that just went Supernova type II is $2.5 \mathrm{M}_{\odot}$ before and after the collapse, while the Radius changes from $10^3 \mathrm{~km}$, before the collapse, to 12 km , after the collapse respectively.(a) What is the change in potential energy of the core between the two stages before and after the collapse?(b) Knowing that the luminosity of the Sun is $4 \times 10^{26} \mathrm{~W}$ how many years would it take the Sun to release the same amount of energy?What is the escape velocity (in km/s) from the surface of a 1.1 M neutron star? From a 3.0 M neutron star?What are the main products of the fusion reactions that take place in low mass main sequence stars?
- What causes an aging giant star to produce a planetary nebula?If a circular accretion disk around a 1.4 M, neutron star has a radius of 1.00 x 105 km as measured from the center of the neutron star to the edge of the disk, what is the orbital velocity (in km/s) of a gas particle located at its outer edge? (The mass of the Sun is GM 1.99 x 1030 kg. Hint: Use the circular orbit velocity formula, V, = ; make sure to express quantities in units of meters, kilograms, and seconds.) km/s(Answer don't copy with hand written please)As a star runs out of hydrogen to fuel nuclear fusion in its core, changes within the star usually cause it to leave the main sequence, expanding and cooling as it does so. Would a star with a radius 12 times that of the Sun, but a surface temperature 0.5 times that of the Sun, be more, or less luminous than the Sun? Show and explain your reasoning. You may assume the surface area of a sphere is A = 4πr2.