Q3. (a) Explain the principle of operation of the induction generator and compare its characteristics with those of the alternator. (b) A 3 phase synchronous generator is delivering a power of 0.9 infinite bus at rated voltage and at a pf 0.8 lagging. The generator has X-1 & X=0.6p.u. Determine the load angle and the excitation voltage. In case loss of excitation takes place, will the generator remain in synchronism?

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
Q3. (a) Explain the principle of operation of the induction generator and compare its
characteristics with those of the alternator.
(b) A 3 phase synchronous generator is delivering a power of 0.9 infinite bus at
rated voltage and at a pf 0.8 lagging. The generator has X-1 & X=0.6p.u.
Determine the load angle and the excitation voltage.
In case loss of excitation takes place, will the generator remain in synchronism?
Transcribed Image Text:Q3. (a) Explain the principle of operation of the induction generator and compare its characteristics with those of the alternator. (b) A 3 phase synchronous generator is delivering a power of 0.9 infinite bus at rated voltage and at a pf 0.8 lagging. The generator has X-1 & X=0.6p.u. Determine the load angle and the excitation voltage. In case loss of excitation takes place, will the generator remain in synchronism?
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,