TABLE E5-2 Line input data R X G B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 2-4 0.009 0.1 0 1.72 12.0 2-5 0.0045 0.050 0 0.88 12.0 4-5 0.00225 0.025 0 0.44 12.0 TABLE E5-3 Transformer input data R X Ge B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 1-5 0.0015 0.02 0 1.72 6.0 2-5 0.00075 0.01 0 0.88 10.0 (a) Calculate Ybus for the system using the data in the tables. (b) Using the initial values given in Table 1, perform one Gauss-Seidel iteration for bus 2 and 3 voltages V2(1) and V3(1). Note that bus 3 is a voltage-controlled bus. Therefore, correction must be applied to the magnitude of V3(1) to force it to have the specified value (|3|= 1.05). (c) In the Newton-Raphson method, calculate the initial power mismatches at all the buses 2-5. Also, calculate the Jacobian matrix elements of the partition J11. (NOTE: a power mismatch at a bus "k" is defined as AP (n) = Psch-Pale(n), where is the scheduled real power and Pak (n) is the power calculated from the power flow equation after iteration n. k,cale The oneline diagram of the system is shown in Fig.E5-1. The data for the components in the system are given in per unit in Tables E6-1,2 and 3. The base values are Sbase=100 MVA, Vbase=15 kV at bus 1. The ratings of the devices are: Generator G1: 400 MVA, 15 kV 800 MVA, 15 kV Generator G2: Transformer T1: 400 MVA, 15 A/345 Y kV Transformer T2: 800 MVA, 345 Y/15 A kV Lengths of transmission lines: L1=200 mi, L2=100 mi, L3=50 mi. G1 Θ T10 L3 L1 L2 中 800 MW 280 Mvar FIGURE E5-1 다다 TABLE E5-1 Bus input data m 80 MW 40 Mvar 3 V 8 PG Bus Type QG PL QL QGmax QGmi Gmin p.u degrees p.u. p.u. p.u. p.u. p.u. p.u. 1 Swing 1.0 - 0 2 Load 0 0 8.0 2.8 3 Voltage- 1.05 5.2 0.8 0.4 4.0 -2.4 controlled 4 Load 0 0 0 0 0 - 5 Load - 0 0 0 0 0 -
TABLE E5-2 Line input data R X G B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 2-4 0.009 0.1 0 1.72 12.0 2-5 0.0045 0.050 0 0.88 12.0 4-5 0.00225 0.025 0 0.44 12.0 TABLE E5-3 Transformer input data R X Ge B Maximum MVA Bus-to-bus p.u. p.u. p.u. p.u. p.u. 1-5 0.0015 0.02 0 1.72 6.0 2-5 0.00075 0.01 0 0.88 10.0 (a) Calculate Ybus for the system using the data in the tables. (b) Using the initial values given in Table 1, perform one Gauss-Seidel iteration for bus 2 and 3 voltages V2(1) and V3(1). Note that bus 3 is a voltage-controlled bus. Therefore, correction must be applied to the magnitude of V3(1) to force it to have the specified value (|3|= 1.05). (c) In the Newton-Raphson method, calculate the initial power mismatches at all the buses 2-5. Also, calculate the Jacobian matrix elements of the partition J11. (NOTE: a power mismatch at a bus "k" is defined as AP (n) = Psch-Pale(n), where is the scheduled real power and Pak (n) is the power calculated from the power flow equation after iteration n. k,cale The oneline diagram of the system is shown in Fig.E5-1. The data for the components in the system are given in per unit in Tables E6-1,2 and 3. The base values are Sbase=100 MVA, Vbase=15 kV at bus 1. The ratings of the devices are: Generator G1: 400 MVA, 15 kV 800 MVA, 15 kV Generator G2: Transformer T1: 400 MVA, 15 A/345 Y kV Transformer T2: 800 MVA, 345 Y/15 A kV Lengths of transmission lines: L1=200 mi, L2=100 mi, L3=50 mi. G1 Θ T10 L3 L1 L2 中 800 MW 280 Mvar FIGURE E5-1 다다 TABLE E5-1 Bus input data m 80 MW 40 Mvar 3 V 8 PG Bus Type QG PL QL QGmax QGmi Gmin p.u degrees p.u. p.u. p.u. p.u. p.u. p.u. 1 Swing 1.0 - 0 2 Load 0 0 8.0 2.8 3 Voltage- 1.05 5.2 0.8 0.4 4.0 -2.4 controlled 4 Load 0 0 0 0 0 - 5 Load - 0 0 0 0 0 -
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.33P: Consider the three single-phase two-winding transformers shown in Figure 3.37. The high-voltage...
Related questions
Question

Transcribed Image Text:TABLE E5-2 Line input data
R
X
G
B
Maximum MVA
Bus-to-bus
p.u.
p.u.
p.u.
p.u.
p.u.
2-4
0.009
0.1
0
1.72
12.0
2-5
0.0045
0.050
0
0.88
12.0
4-5
0.00225
0.025
0
0.44
12.0
TABLE E5-3 Transformer input data
R
X
Ge
B
Maximum MVA
Bus-to-bus
p.u.
p.u.
p.u.
p.u.
p.u.
1-5
0.0015
0.02
0
1.72
6.0
2-5
0.00075
0.01
0
0.88
10.0
(a) Calculate Ybus for the system using the data in the tables.
(b) Using the initial values given in Table 1, perform one Gauss-Seidel iteration
for bus 2 and 3 voltages V2(1) and V3(1). Note that bus 3 is a voltage-controlled
bus. Therefore, correction must be applied to the magnitude of V3(1) to force it
to have the specified value (|3|= 1.05).
(c) In the Newton-Raphson method, calculate the initial power mismatches at all
the buses 2-5. Also, calculate the Jacobian matrix elements of the partition J11.
(NOTE: a power mismatch at a bus "k" is defined as AP (n) = Psch-Pale(n),
where is the scheduled real power and Pak (n) is the power calculated
from the power flow equation after iteration n.
k,cale

Transcribed Image Text:The oneline diagram of the system is shown in Fig.E5-1. The data for the components in
the system are given in per unit in Tables E6-1,2 and 3. The base values are Sbase=100
MVA, Vbase=15 kV at bus 1. The ratings of the devices are:
Generator G1:
400 MVA, 15 kV
800 MVA, 15 kV
Generator G2:
Transformer T1:
400 MVA, 15 A/345 Y kV
Transformer T2:
800 MVA, 345 Y/15 A kV
Lengths of transmission lines: L1=200 mi, L2=100 mi, L3=50 mi.
G1
Θ
T10
L3
L1
L2
中
800 MW
280 Mvar
FIGURE E5-1
다다
TABLE E5-1 Bus input data
m
80 MW
40 Mvar
3
V
8
PG
Bus
Type
QG
PL
QL
QGmax
QGmi
Gmin
p.u
degrees
p.u.
p.u.
p.u.
p.u.
p.u.
p.u.
1
Swing
1.0
-
0
2
Load
0
0
8.0
2.8
3
Voltage-
1.05
5.2
0.8
0.4
4.0
-2.4
controlled
4
Load
0
0
0
0
0
-
5
Load
-
0
0
0
0
0
-
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning

Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning