Sketch the load characteristic of a d.c. generator with (i) shunt (ii) series excitation. Give reasons for the particular shape in each case. The O.C.C. at 700 r.p.m. of a series generator with separately-excited field is as follows : Field current (A) : 20 40 50 60 75 Armature e.m.f. (V) : 190 360 410 450 480 Determine the current and terminal voltage as a self-excited series machine when running at 600 r.p.m. with a load of 6 Ω connected to the terminal. Resistance of armature and series winding is 0.3Ω. Ignore effect of armature reaction.
Sketch the load characteristic of a d.c. generator with (i) shunt (ii) series excitation. Give reasons for the particular shape in each case. The O.C.C. at 700 r.p.m. of a series generator with separately-excited field is as follows : Field current (A) : 20 40 50 60 75 Armature e.m.f. (V) : 190 360 410 450 480 Determine the current and terminal voltage as a self-excited series machine when running at 600 r.p.m. with a load of 6 Ω connected to the terminal. Resistance of armature and series winding is 0.3Ω. Ignore effect of armature reaction.
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Sketch the load characteristic of a d.c. generator with (i) shunt (ii) series excitation. Give reasons
for the particular shape in each case.
The O.C.C. at 700 r.p.m. of a series generator with separately-excited field is as follows :
Field current (A) : 20 40 50 60 75
Armature e.m.f. (V) : 190 360 410 450 480
Determine the current and terminal voltage as a self-excited series machine when running at 600 r.p.m.
with a load of 6 Ω connected to the terminal. Resistance of armature and series winding is 0.3Ω. Ignore effect
of armature reaction.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,