4.18 Assume that a 5 mile long feeder is supplying a 2000 kVA load of increasing load density starting at a substation. If the K constant of the feeder is given as 0.00001%VD per kVA.mi, determine the following: (a) The percent voltage drop in the main. (b) Repeat part (a) but assume that the load is a lumped-sum load and connected at the end of the feeder. (c) Repeat part (a) but assume that the load is distributed uniformly along the main.

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter3: Power Transformers
Section: Chapter Questions
Problem 3.37P: Three single-phase two-winding transformers, each rated 25MVA,54.2/5.42kV, are connected to form a...
icon
Related questions
Question
Pls show neat and whole solution
4.18 Assume that a 5 mile long feeder is supplying a 2000 kVA load of increasing load density
starting at a substation. If the K constant of the feeder is given as 0.00001%VD per kVA.mi,
determine the following:
(a) The percent voltage drop in the main.
(b) Repeat part (a) but assume that the load is a lumped-sum load and connected at the end
of the feeder.
(c) Repeat part (a) but assume that the load is distributed uniformly along the main.
Transcribed Image Text:4.18 Assume that a 5 mile long feeder is supplying a 2000 kVA load of increasing load density starting at a substation. If the K constant of the feeder is given as 0.00001%VD per kVA.mi, determine the following: (a) The percent voltage drop in the main. (b) Repeat part (a) but assume that the load is a lumped-sum load and connected at the end of the feeder. (c) Repeat part (a) but assume that the load is distributed uniformly along the main.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning
EBK ELECTRICAL WIRING RESIDENTIAL
EBK ELECTRICAL WIRING RESIDENTIAL
Electrical Engineering
ISBN:
9781337516549
Author:
Simmons
Publisher:
CENGAGE LEARNING - CONSIGNMENT