In the current competitive retail business, traditional brick-mortar business model has slowly lost out to e-commerce. When trading is done online, it's important to understand customer buying patterns. In return, the ability to predict this pattern into potential marketing solutions to increase sales and profit. Business owners need to know their customers and understand their needs and behaviors. In current business settings, customers purchasing patterns are recorded within big data. Big data when adequately used serve good and formidable business competitive advantage. To do this, retailers use a technique called market basket analysis. Market basket analysis consists of analyzing large data sets that include purchase history, revealing product groupings, and products that are likely to be purchased together. The simulated case (see table 1) below illustrates a retail purchasing pattern for garments collected over 19 cluster retails. The recorded purchasing combination serves to provide data analytics to predict future marketing patterns. The key question in the market basket analysis is what products are most frequently purchased together. Cust No 1 2 3 4 5 6 7 8 9 5 Jeans 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 Shirt 1 0 1 1 0 0 0 0 1 1 Jacket 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 Shoes 1 1 1 1 0 0 0 0 1 10 1 11 1 12 0 0 13 1 0 14 1 0 15 0 1 16 0 1 17 1 1 18 1 1 19 1 1 Table 1: Buying Pattern from 19 Cluster Retail Stores 0 0 0 0 Question 1 Using market basket analysis, construct a combination of two purchased items into an appropriate table or matrix. Record the following: (i) Frequency (ii) Support (iii) Confidence (iv) Lift Which of the following 3 combinations would you prioritize? Justify the reason.
In the current competitive retail business, traditional brick-mortar business model has slowly lost out to e-commerce. When trading is done online, it's important to understand customer buying patterns. In return, the ability to predict this pattern into potential marketing solutions to increase sales and profit. Business owners need to know their customers and understand their needs and behaviors. In current business settings, customers purchasing patterns are recorded within big data. Big data when adequately used serve good and formidable business competitive advantage. To do this, retailers use a technique called market basket analysis. Market basket analysis consists of analyzing large data sets that include purchase history, revealing product groupings, and products that are likely to be purchased together. The simulated case (see table 1) below illustrates a retail purchasing pattern for garments collected over 19 cluster retails. The recorded purchasing combination serves to provide data analytics to predict future marketing patterns. The key question in the market basket analysis is what products are most frequently purchased together. Cust No 1 2 3 4 5 6 7 8 9 5 Jeans 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 Shirt 1 0 1 1 0 0 0 0 1 1 Jacket 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 Shoes 1 1 1 1 0 0 0 0 1 10 1 11 1 12 0 0 13 1 0 14 1 0 15 0 1 16 0 1 17 1 1 18 1 1 19 1 1 Table 1: Buying Pattern from 19 Cluster Retail Stores 0 0 0 0 Question 1 Using market basket analysis, construct a combination of two purchased items into an appropriate table or matrix. Record the following: (i) Frequency (ii) Support (iii) Confidence (iv) Lift Which of the following 3 combinations would you prioritize? Justify the reason.
Principles Of Marketing
17th Edition
ISBN:9780134492513
Author:Kotler, Philip, Armstrong, Gary (gary M.)
Publisher:Kotler, Philip, Armstrong, Gary (gary M.)
Chapter1: Marketing: Creating Customer Value And Engagement
Section: Chapter Questions
Problem 1.1DQ
Related questions
Question

Transcribed Image Text:In the current competitive retail business, traditional brick-mortar business model has slowly lost out to e-commerce. When trading is done online, it's important to understand customer
buying patterns. In return, the ability to predict this pattern into potential marketing solutions to increase sales and profit. Business owners need to know their customers and understand
their needs and behaviors. In current business settings, customers purchasing patterns are recorded within big data. Big data when adequately used serve good and formidable
business competitive advantage. To do this, retailers use a technique called market basket analysis. Market basket analysis consists of analyzing large data sets that include purchase
history, revealing product groupings, and products that are likely to be purchased together.
The simulated case (see table 1) below illustrates a retail purchasing pattern for garments collected over 19 cluster retails. The recorded purchasing combination serves to provide data
analytics to predict future marketing patterns. The key question in the market basket analysis is what products are most frequently purchased together.
Cust No
A234S
1
6
7
8
9
10
11
12
13
Jeans
1
0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
Shirt
1
0
1
1
0
0
0
0
1
1
0
0
1
Jacket
0
0
0
1
1
1
1
0
0
0
1
1
1
Shoes
1
1
1
1
14
1
15
0
16
0
1
17
1
1
18
1
1
19
1
1
Table 1: Buying Pattern from 19 Cluster Retail Stores
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
Question 1
Using market basket analysis, construct a combination of two purchased items into an appropriate table or matrix. Record the following:
(i) Frequency
(ii) Support
(iii) Confidence
(iv) Lift
Which of the following 3 combinations would you prioritize? Justify the reason.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Recommended textbooks for you

Principles Of Marketing
Marketing
ISBN:
9780134492513
Author:
Kotler, Philip, Armstrong, Gary (gary M.)
Publisher:
Pearson Higher Education,

Marketing
Marketing
ISBN:
9781259924040
Author:
Roger A. Kerin, Steven W. Hartley
Publisher:
McGraw-Hill Education

Foundations of Business (MindTap Course List)
Marketing
ISBN:
9781337386920
Author:
William M. Pride, Robert J. Hughes, Jack R. Kapoor
Publisher:
Cengage Learning

Principles Of Marketing
Marketing
ISBN:
9780134492513
Author:
Kotler, Philip, Armstrong, Gary (gary M.)
Publisher:
Pearson Higher Education,

Marketing
Marketing
ISBN:
9781259924040
Author:
Roger A. Kerin, Steven W. Hartley
Publisher:
McGraw-Hill Education

Foundations of Business (MindTap Course List)
Marketing
ISBN:
9781337386920
Author:
William M. Pride, Robert J. Hughes, Jack R. Kapoor
Publisher:
Cengage Learning

Marketing: An Introduction (13th Edition)
Marketing
ISBN:
9780134149530
Author:
Gary Armstrong, Philip Kotler
Publisher:
PEARSON


Contemporary Marketing
Marketing
ISBN:
9780357033777
Author:
Louis E. Boone, David L. Kurtz
Publisher:
Cengage Learning