A region of N-type semiconductor doped by Nd=10^15 cm^-3 is fully depleted of both majority and minority carriers by an external electric field. Assuming that the concentration of electron-hole pairs that is generated per unit time does not change when the semiconductor is depleted, determine the effective generation rate if the semiconductor is (a) Si (ni = 1.02 × 1010 cm-3) and (b) GaAs (ni = 2.1 × 106 cm-3). The minority-carrier lifetime is 1 μs in both cases.
A region of N-type semiconductor doped by Nd=10^15 cm^-3 is fully depleted of both majority and minority carriers by an external electric field. Assuming that the concentration of electron-hole pairs that is generated per unit time does not change when the semiconductor is depleted, determine the effective generation rate if the semiconductor is (a) Si (ni = 1.02 × 1010 cm-3) and (b) GaAs (ni = 2.1 × 106 cm-3). The minority-carrier lifetime is 1 μs in both cases.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images