A linear electrical load draws 11 A at a 0.72 lagging power factor./1 153. When a capacitor is connected, the line current dropped to 122 A and the power factor improved to 0.98 lagging. Supply frequency is 50 Hz. a. Let the current drawn from the source before and after introduction of the capacitor be 11 and 12 respectively. Take the source voltage as the reference and express 11 and 12 as vector quantities in polar form. b. Obtain the capacitor current, IC = 12 - 11, graphically as well as using complex number manipulation. Compare the results. c. Express the waveforms of the source current before (11(t)) and after (12(t)) introduction of the capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your plots. d. Analytically solve i2(t) – i1(t) using the theories of trigonometry to obtain the capacitor current in the form, ¡C(t) = ICm sin(2πft + OC). Compare the result with the result in Part b.

Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Chapter2: Fundamentals
Section: Chapter Questions
Problem 2.1MCQ: The rms value of v(t)=Vmaxcos(t+) is given by a. Vmax b. Vmax/2 c. 2Vmax d. 2Vmax
icon
Related questions
Question
A linear electrical load draws 11 A at a 0.72 lagging power factor./1 153. When a capacitor is connected, the line current dropped to 122 A and the power factor
improved to 0.98 lagging. Supply frequency is 50 Hz.
a. Let the current drawn from the source before and after introduction of the capacitor be 11 and 12
respectively. Take the source voltage as the reference and express 11 and 12 as vector
quantities in polar form.
b. Obtain the capacitor current, IC = 12 - 11, graphically as well as using complex number
manipulation. Compare the results.
c. Express the waveforms of the source current before (11(t)) and after (12(t)) introduction of the
capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your
plots.
d. Analytically solve i2(t) – i1(t) using the theories of trigonometry to obtain the capacitor current
in the form, ¡C(t) = ICm sin(2πft + OC). Compare the result with the result in Part b.
Transcribed Image Text:A linear electrical load draws 11 A at a 0.72 lagging power factor./1 153. When a capacitor is connected, the line current dropped to 122 A and the power factor improved to 0.98 lagging. Supply frequency is 50 Hz. a. Let the current drawn from the source before and after introduction of the capacitor be 11 and 12 respectively. Take the source voltage as the reference and express 11 and 12 as vector quantities in polar form. b. Obtain the capacitor current, IC = 12 - 11, graphically as well as using complex number manipulation. Compare the results. c. Express the waveforms of the source current before (11(t)) and after (12(t)) introduction of the capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your plots. d. Analytically solve i2(t) – i1(t) using the theories of trigonometry to obtain the capacitor current in the form, ¡C(t) = ICm sin(2πft + OC). Compare the result with the result in Part b.
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Power System Analysis and Design (MindTap Course …
Power System Analysis and Design (MindTap Course …
Electrical Engineering
ISBN:
9781305632134
Author:
J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:
Cengage Learning