3. For the retaining wall given in the figure, compute the factors of safety against overturning, sliding, and bearing capacity failure. Check if the eccentricity at the base of the retaining wall is acceptable. The unit weight of the concrete is 24 kN/m³. The friction 2 and between the base of the concrete and soil is 8=6. Ignore the passive earth force 3 in front of the toe of the retaining wall. Make any other assumption that you considered necessary. (All forces and moments , three types of stability ) 0.5 mt 0.3 m q= 10 kN/m² 4.5 m Ysoil = 16.5 kN/m³ 3 c'=0 6' = 35° Yconcrete = 24 kN/m³ 0:8 m. Bearing capacity equation: q=dNFFF+qN F F F +0.5/BNF.FF. Equations and Tables: K. 1-sino' K₁ = 0.95-sin ' Shape factors by De Beer (1970) Depth factors by Hansen (1970) N F =1+0.4(+) F =1+(-)) LN F =1+(-) tan 6 1+tan F, =1-0.4() B Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) F₁ = F₁₂ = (1-B F₁ =1+2 tan ø'(1-sin ø')² | F, = (1- F₁ =1 B 90° Table 4.2 Bearing Capacity Factors NE Na Ny N N N K o(overconsolidate) K o(normally consolidated) √OCR 0 5.14 1.00 0.00 1 5.38 1.09 0.07 2 5.63 1.20 0.15 K = tan² (45-%) 34567 5.90 1.31 0.24 6.19 1.43 0.34 6.49 1.57 0.45 21 6.81 1.72 0.57 7.16 1.88 0.71 K₁ = cosa-√cos a-cos² ' =COS& K, cosa + √cos² a-cos² o' 8 7.53 2.06 0.86 =COS& 9 7.92 2.25 1.03 cosa + √cos² a-cos² ' Cosa – -√cos² cos² a-cos² ' 10 8.35 2.47 1.22 11 8.80 2.71 1.44 27 12 9.28 2.97 1.69 K sin² (B+) 13 sin ẞ sin(ẞ-8)[1+ sin('+5) sin(-a)2 sin(B-8) sin(a+B)" 14 15 345 9.81 3.26 1.97 10.37 3.59 2.29 10.98 3.94 2.65 SERDAR2222222223 16 11.63 4.34 3.06 17 12.34 4.77 3.53 18 13.10 5.26 4.07 19 13.93 5.80 4.68 20 14.83 6.40 5.39 15.82 7.07 6.20 16.88 7.82 7.13 18.05 8.66 8.20 24 19.32 9.60 9.44 25 20.72 10.66 10.88 26 22.25 11.85 12.54 23.94 13.20 14.47 28 25.80 14.72 16.72 29 27.86 16.44 19.34 30 30.14 18.40 22.40 31 32.67 20.63 25.99 (continued) K₁ sin(B-) Table 4.2 Bearing Capacity Factors (Continued) sin ẞ sin(B+)[1- sin('+) sin('+a)₁₂ Vsin(+6) sin(a + ẞ) $' No Na N₁ φ' No N₁₂ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 33 38.64 26.09 35.19 43 105.11 99.02 186.54 34 42.16 29.44 41.06 44 118.37 115.31 224.64 35 46.12 33.30 48.03 45 133.88 134.88 271.76 36 50.59 37.75 56.31 46 152.10 158.51 330.35 37 55.63 42.92 66.19 47 173.64 187.21 403.67 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 229.93 265.51 613.16 40 75.31 64.20 109.41 50 266.89 319.07 762.89 41 83.86 73.90 130.22

Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter17: Retaining Walls
Section: Chapter Questions
Problem 17.1P
icon
Related questions
Question

I need detailed explanation solving this exercise from Foundation Engineering, step by step please.

3.
For the retaining wall given in the figure, compute the factors of safety against
overturning, sliding, and bearing capacity failure. Check if the eccentricity at the base of
the retaining wall is acceptable. The unit weight of the concrete is 24 kN/m³. The friction
2
and between the base of the concrete and soil is 8=6. Ignore the passive earth force
3
in front of the toe of the retaining wall. Make any other assumption that you considered
necessary.
(All forces and moments , three types of stability
)
0.5 mt
0.3 m
q= 10 kN/m²
4.5 m
Ysoil = 16.5 kN/m³
3
c'=0 6' = 35°
Yconcrete = 24 kN/m³
0:8 m.
Bearing capacity equation: q=dNFFF+qN F F F +0.5/BNF.FF.
Equations and Tables:
K. 1-sino' K₁ = 0.95-sin '
Shape factors by De
Beer (1970)
Depth factors by Hansen (1970)
N
F =1+0.4(+)
F =1+(-))
LN
F =1+(-) tan 6
1+tan
F, =1-0.4()
B
Inclination factors by Meyerhof (1963)
and Hanna and Meyerhof (1981)
F₁ = F₁₂ = (1-B
F₁ =1+2 tan ø'(1-sin ø')² | F, = (1-
F₁ =1
B
90°
Table 4.2 Bearing Capacity Factors
NE
Na
Ny
N
N
N
K
o(overconsolidate)
K
o(normally consolidated)
√OCR
0
5.14
1.00
0.00
1
5.38
1.09
0.07
2
5.63
1.20
0.15
K = tan² (45-%)
34567
5.90
1.31
0.24
6.19
1.43
0.34
6.49
1.57
0.45
21
6.81
1.72
0.57
7.16
1.88
0.71
K₁ =
cosa-√cos a-cos² '
=COS&
K,
cosa + √cos² a-cos² o'
8
7.53
2.06
0.86
=COS&
9
7.92
2.25
1.03
cosa + √cos² a-cos² '
Cosa –
-√cos²
cos² a-cos² '
10
8.35
2.47
1.22
11
8.80
2.71
1.44
27
12
9.28
2.97
1.69
K
sin² (B+)
13
sin ẞ sin(ẞ-8)[1+
sin('+5) sin(-a)2
sin(B-8) sin(a+B)"
14
15
345
9.81
3.26
1.97
10.37
3.59
2.29
10.98
3.94
2.65
SERDAR2222222223
16
11.63
4.34
3.06
17
12.34
4.77
3.53
18
13.10
5.26
4.07
19
13.93
5.80
4.68
20
14.83
6.40
5.39
15.82
7.07
6.20
16.88
7.82
7.13
18.05
8.66
8.20
24
19.32
9.60
9.44
25
20.72
10.66
10.88
26
22.25
11.85
12.54
23.94
13.20
14.47
28
25.80
14.72
16.72
29
27.86
16.44
19.34
30
30.14
18.40
22.40
31
32.67
20.63
25.99
(continued)
K₁
sin(B-)
Table 4.2 Bearing Capacity Factors (Continued)
sin ẞ sin(B+)[1-
sin('+) sin('+a)₁₂
Vsin(+6) sin(a + ẞ)
$'
No
Na
N₁
φ'
No
N₁₂
Ny
32
35.49
23.18
30.22
42
93.71
85.38
155.55
33
38.64
26.09
35.19
43
105.11
99.02
186.54
34
42.16
29.44
41.06
44
118.37
115.31
224.64
35
46.12
33.30
48.03
45
133.88
134.88
271.76
36
50.59
37.75
56.31
46
152.10
158.51
330.35
37
55.63
42.92
66.19
47
173.64
187.21
403.67
38
61.35
48.93
78.03
48
199.26
222.31
496.01
39
67.87
55.96
92.25
49
229.93
265.51
613.16
40
75.31
64.20
109.41
50
266.89
319.07
762.89
41
83.86
73.90
130.22
Transcribed Image Text:3. For the retaining wall given in the figure, compute the factors of safety against overturning, sliding, and bearing capacity failure. Check if the eccentricity at the base of the retaining wall is acceptable. The unit weight of the concrete is 24 kN/m³. The friction 2 and between the base of the concrete and soil is 8=6. Ignore the passive earth force 3 in front of the toe of the retaining wall. Make any other assumption that you considered necessary. (All forces and moments , three types of stability ) 0.5 mt 0.3 m q= 10 kN/m² 4.5 m Ysoil = 16.5 kN/m³ 3 c'=0 6' = 35° Yconcrete = 24 kN/m³ 0:8 m. Bearing capacity equation: q=dNFFF+qN F F F +0.5/BNF.FF. Equations and Tables: K. 1-sino' K₁ = 0.95-sin ' Shape factors by De Beer (1970) Depth factors by Hansen (1970) N F =1+0.4(+) F =1+(-)) LN F =1+(-) tan 6 1+tan F, =1-0.4() B Inclination factors by Meyerhof (1963) and Hanna and Meyerhof (1981) F₁ = F₁₂ = (1-B F₁ =1+2 tan ø'(1-sin ø')² | F, = (1- F₁ =1 B 90° Table 4.2 Bearing Capacity Factors NE Na Ny N N N K o(overconsolidate) K o(normally consolidated) √OCR 0 5.14 1.00 0.00 1 5.38 1.09 0.07 2 5.63 1.20 0.15 K = tan² (45-%) 34567 5.90 1.31 0.24 6.19 1.43 0.34 6.49 1.57 0.45 21 6.81 1.72 0.57 7.16 1.88 0.71 K₁ = cosa-√cos a-cos² ' =COS& K, cosa + √cos² a-cos² o' 8 7.53 2.06 0.86 =COS& 9 7.92 2.25 1.03 cosa + √cos² a-cos² ' Cosa – -√cos² cos² a-cos² ' 10 8.35 2.47 1.22 11 8.80 2.71 1.44 27 12 9.28 2.97 1.69 K sin² (B+) 13 sin ẞ sin(ẞ-8)[1+ sin('+5) sin(-a)2 sin(B-8) sin(a+B)" 14 15 345 9.81 3.26 1.97 10.37 3.59 2.29 10.98 3.94 2.65 SERDAR2222222223 16 11.63 4.34 3.06 17 12.34 4.77 3.53 18 13.10 5.26 4.07 19 13.93 5.80 4.68 20 14.83 6.40 5.39 15.82 7.07 6.20 16.88 7.82 7.13 18.05 8.66 8.20 24 19.32 9.60 9.44 25 20.72 10.66 10.88 26 22.25 11.85 12.54 23.94 13.20 14.47 28 25.80 14.72 16.72 29 27.86 16.44 19.34 30 30.14 18.40 22.40 31 32.67 20.63 25.99 (continued) K₁ sin(B-) Table 4.2 Bearing Capacity Factors (Continued) sin ẞ sin(B+)[1- sin('+) sin('+a)₁₂ Vsin(+6) sin(a + ẞ) $' No Na N₁ φ' No N₁₂ Ny 32 35.49 23.18 30.22 42 93.71 85.38 155.55 33 38.64 26.09 35.19 43 105.11 99.02 186.54 34 42.16 29.44 41.06 44 118.37 115.31 224.64 35 46.12 33.30 48.03 45 133.88 134.88 271.76 36 50.59 37.75 56.31 46 152.10 158.51 330.35 37 55.63 42.92 66.19 47 173.64 187.21 403.67 38 61.35 48.93 78.03 48 199.26 222.31 496.01 39 67.87 55.96 92.25 49 229.93 265.51 613.16 40 75.31 64.20 109.41 50 266.89 319.07 762.89 41 83.86 73.90 130.22
Expert Solution
steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning